Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927304

RESUMO

Pediatric high-grade gliomas (pHGG) are malignant and usually fatal central nervous system (CNS) WHO Grade 4 tumors. The majority of pHGG consist of diffuse midline gliomas (DMG), H3.3 or H3.1 K27 altered, or diffuse hemispheric gliomas (DHG) (H3.3 G34-mutant). Due to diffuse tumor infiltration of eloquent brain areas, especially for DMG, surgery has often been limited and chemotherapy has not been effective, leaving fractionated radiation to the involved field as the current standard of care. pHGG has only been classified as molecularly distinct from adult HGG since 2012 through Next-Generation sequencing approaches, which have shown pHGG to be epigenetically regulated and specific tumor sub-types to be representative of dysregulated differentiating cells. To translate discovery research into novel therapies, improved pre-clinical models that more adequately represent the tumor biology of pHGG are required. This review will summarize the molecular characteristics of different pHGG sub-types, with a specific focus on histone K27M mutations and the dysregulated gene expression profiles arising from these mutations. Current and emerging pre-clinical models for pHGG will be discussed, including commonly used patient-derived cell lines and in vivo modeling techniques, encompassing patient-derived xenograft murine models and genetically engineered mouse models (GEMMs). Lastly, emerging techniques to model CNS tumors within a human brain environment using brain organoids through co-culture will be explored. As models that more reliably represent pHGG continue to be developed, targetable biological and genetic vulnerabilities in the disease will be more rapidly identified, leading to better treatments and improved clinical outcomes.

2.
Mol Cell Biochem ; 478(6): 1251-1267, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36302993

RESUMO

Glioblastoma (GBM) is the most prevalent primary central nervous system tumour in adults. The lethality of GBM lies in its highly invasive, infiltrative, and neurologically destructive nature resulting in treatment failure, tumour recurrence and death. Even with current standard of care treatment with surgery, radiotherapy and chemotherapy, surviving tumour cells invade throughout the brain. We have previously shown that this invasive phenotype is facilitated by actin-rich, membrane-based structures known as invadopodia. The formation and matrix degrading activity of invadopodia is enhanced in GBM cells that survive treatment. Drug repurposing provides a means of identifying new therapeutic applications for existing drugs without the need for discovery or development and the associated time for clinical implementation. We investigate several FDA-approved agents for their ability to act as both cytotoxic agents in reducing cell viability and as 'anti-invadopodia' agents in GBM cell lines. Based on their cytotoxicity profile, three agents were selected, bortezomib, everolimus and fludarabine, to test their effect on GBM cell invasion. All three drugs reduced radiation/temozolomide-induced invadopodia activity, in addition to reducing GBM cell viability. These drugs demonstrate efficacious properties warranting further investigation with the potential to be implemented as part of the treatment regime for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Reposicionamento de Medicamentos , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Temozolomida/farmacologia
3.
Cell Oncol (Dordr) ; 46(3): 589-602, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36567397

RESUMO

PURPOSE: Tumor cells thrive by adapting to the signals in their microenvironment. To adapt, cancer cells activate signaling and transcriptional programs and migrate to establish micro-niches, in response to signals from neighboring cells and non-cellular stromal factors. Understanding how the tumor microenvironment evolves during disease progression is crucial to deciphering the mechanisms underlying the functional behavior of cancer cells. METHODS: Multiplex immunohistochemistry, spatial analysis and histological dyes were used to identify and measure immune cell infiltration, cell signal activation and extracellular matrix deposition in low-grade, high-grade astrocytoma and glioblastoma. RESULTS: We show that lower grade astrocytoma tissue is largely devoid of infiltrating immune cells and extracellular matrix proteins, while high-grade astrocytoma exhibits abundant immune cell infiltration, activation, and extensive tissue remodeling. Spatial analysis shows that most T-cells are restricted to perivascular regions, but bone marrow-derived macrophages penetrate deep into neoplastic cell-rich regions. The tumor microenvironment is characterized by heterogeneous PI3K, MAPK and CREB signaling, with specific signaling profiles correlating with distinct pathological hallmarks, including angiogenesis, tumor cell density and regions where neoplastic cells border the extracellular matrix. Our results also show that tissue remodeling is important in regulating the architecture of the tumor microenvironment during tumor progression. CONCLUSION: The tumor microenvironment in malignant astrocytoma, exhibits changes in cell composition, cell signaling activation and extracellular matrix deposition during disease development and that targeting the extracellular matrix, as well as cell signaling activation will be critical to designing personalized therapy.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Microambiente Tumoral , Glioma/metabolismo , Astrocitoma/metabolismo , Transdução de Sinais , Matriz Extracelular/metabolismo , Neoplasias Encefálicas/patologia
4.
Front Oncol ; 12: 873722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505819

RESUMO

Brain tumours are the most common solid tumour in children and the leading cause of cancer related death in children. Current treatments include surgery, chemotherapy and radiotherapy. The need for aggressive treatment means many survivors are left with permanent severe disability, physical, intellectual and social. Recent progress in immunotherapy, including genetically engineered T cells with chimeric antigen receptors (CARs) for treating cancer, may provide new avenues to improved outcomes for patients with paediatric brain cancer. In this review we discuss advances in CAR T cell immunotherapy, the major CAR T cell targets that are in clinical and pre-clinical development with a focus on paediatric brain tumours, the paediatric brain tumour microenvironment and strategies used to improve CAR T cell therapy for paediatric tumours.

5.
Methods Cell Biol ; 170: 21-30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811101

RESUMO

Cancer stem cells are defined as low-abundance, quiescent cells and are considered a major cellular source of tumor recurrence following therapy, which identifies these cells as important therapeutic targets for difficult-to-treat cancers, including high-grade gliomas. By contrast to the highly proliferative bulk tumor cells, glioma stem cells (GSC) are slow-cycling, and therefore less sensitive to DNA damaging cytotoxic drugs. GSC are also less reliant on aerobic glycolytic metabolism, leading to inadequate clearing of GSC by chemotherapy and radiotherapy. The definition of GSC is based on the expression of specific stem cell protein markers. This method of GSC isolation is successful in isolating cell populations that can reliably recapitulate the tumor. However, cell populations that lack stem marker expression may also be capable of tumor recapitulation. Therefore, robust, reproducible methods for isolating GSC are required to identify and isolate cells with stem cell characteristics. Here, we provide a comprehensive and reproducible protocol for the isolation of slow-cycling GSC. Using this method, GSC isolated retain key characteristics of the cells in situ, including expression of genes associated with cell quiescence and invasive potential, compared to non-quiescent cell populations. Thus, isolation of GSC gated on cell proliferation offers a reliable alternative method for in vitro GSC identification, that adequately mirrors the physiological properties of GSC seen in vivo.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioblastoma/patologia , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Células-Tronco Neoplásicas/patologia
6.
Br J Cancer ; 125(11): 1466-1476, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34349251

RESUMO

The prognosis for patients with glioblastoma (GBM), the most common and malignant type of primary brain tumour, is very poor, despite current standard treatments such as surgery, radiotherapy and chemotherapy. Moreover, the immunosuppressive tumour microenvironment hinders the development of effective immunotherapies for GBM. Cytokines such as interleukin-10 (IL-10) play a major role in modulating the activity of infiltrating immune cells and tumour cells in GBM, predominantly conferring an immunosuppressive action; however, in some circumstances, IL-10 can have an immunostimulatory effect. Elucidating the function of IL-10 in GBM is necessary to better strategise and improve the efficacy of immunotherapy. This review discusses the immunostimulatory and immunosuppressive roles of IL-10 in the GBM tumour microenvironment while considering IL-10-targeted treatment strategies. The molecular mechanisms that underlie the expression of IL-10 in various cell types are also outlined, and how this resulting information might provide an avenue for the improvement of immunotherapy in GBM is explored.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Interleucina-10/metabolismo , Progressão da Doença , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA