Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Top Dev Biol ; 159: 344-370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729681

RESUMO

The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.


Assuntos
Remodelação Vascular , Humanos , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/embriologia , Neovascularização Fisiológica , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Diferenciação Celular , Desenvolvimento Embrionário , Endotélio Vascular/citologia
2.
bioRxiv ; 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36711611

RESUMO

Background: The blood brain barrier (BBB) preserves neuronal function in the central nervous system (CNS) by tightly controlling metabolite exchanges with the blood. In the eye, the retina is likewise protected by the blood-retina barrier (BRB) to maintain phototransduction. We showed that the secreted guidance cue Netrin-1 regulated BBB integrity, by binding to endothelial Unc5B and regulating canonical ß-catenin dependent expression of BBB gene expression. Objective: Here, we investigated if Netrin-1-binding to endothelial Unc5B also controlled BRB integrity, and if this process involved Norrin/ß-catenin signaling, which is the major known driver of BRB development and maintenance. Methods: We analyzed Tamoxifen-inducible loss- and gain- of-function alleles of Unc5B, Ntn1 and Ctnnb1 in conjunction with tracer injections and biochemical signaling studies. Results: Inducible endothelial Unc5B deletion, and inducible global Ntn1 deletion in postnatal mice reduced phosphorylation of the Norrin receptor LRP5, leading to reduced ß-catenin and LEF1 expression, conversion of retina endothelial cells from a barrier-competent Claudin-5+/PLVAP- state to a Claudin-5-/PLVAP+ leaky phenotype, and extravasation of injected low molecular weight tracers. Inducible Ctnnb1 gain of function rescued vascular leak in Unc5B mutants, and Ntn1 overexpression induced BRB tightening. Unc5B expression in pericytes contributed to BRB permeability, via regulation of endothelial Unc5B. Mechanistically, Netrin-1-Unc5B signaling promoted ß-catenin dependent BRB signaling by enhancing phosphorylation of the Norrin receptor LRP5 via the Discs large homologue 1 (Dlg1) intracellular scaffolding protein. Conclusions: The data identify Netrin1-Unc5B as novel regulators of BRB integrity, with implications for diseases associated with BRB disruption.

3.
Angew Chem Int Ed Engl ; 61(46): e202209518, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36283971

RESUMO

Manley and co-workers provide data demonstrating that, at super-pharmacological concentrations (300 µM), a ternary complex between Abl, asciminib, and ATP-competitive inhibitors is possible. The work in our manuscript concerns the interplay of asciminib (and GNF-2) with ATP-competitive inhibitors at pharmacologically relevant concentrations (Cmax =1.6-3.7 µM for asciminib). Manley and co-workers do not question any of the studies that we reported, nor do they provide explanations for how our work fits into their preferred model. Herein, we consider the data presented by Manley and co-workers. In addition, we provide new data supporting the findings in our Communication. Asciminib and ATP-competitive inhibitors do not simultaneously bind Abl at pharmacologically relevant concentrations unless the conformation selectivity for both ligands is matched.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-abl , Humanos , Trifosfato de Adenosina/metabolismo , Conformação Molecular , Mutação , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores
4.
Soc Work Health Care ; 61(4): 218-242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924348

RESUMO

The COVID-19 pandemic has profoundly affected the world. In Canada, the impact has been worrisome. Canada is a large, sparsely populated country with a system of universal health care that is decided nationally and enacted by each province and territory. There are variations in health care, as well as in the provision of social work, throughout the country. The aim of this survey is to examine the impact of the COVID-19 pandemic on social workers employed in health care. Participants were recruited for an online survey via social media, professional associations, and social work education programs. Three hundred and seventy-six social workers participated. Analyses were performed to: (1) investigate the changes in workplace conditions indicated by social workers as a result of the COVID-19 pandemic; (2) examine reported levels of distress, social support, quality of professional life, resilience, and posttraumatic growth among respondents during this time; and (3) contextualize these findings by exploring similarities and differences across geographic locations. Many respondents were deemed essential workers. Significant differences across regions were not found. The knowledge generated has important implications for all sectors of the social work profession in Canada.


Assuntos
COVID-19 , COVID-19/epidemiologia , Canadá/epidemiologia , Atenção à Saúde , Humanos , Pandemias , SARS-CoV-2 , Serviço Social
5.
Nat Commun ; 13(1): 1169, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246514

RESUMO

Blood-brain barrier (BBB) integrity is critical for proper function of the central nervous system (CNS). Here, we show that the endothelial Unc5B receptor controls BBB integrity by maintaining Wnt/ß-catenin signaling. Inducible endothelial-specific deletion of Unc5B in adult mice leads to BBB leak from brain capillaries that convert to a barrier-incompetent state with reduced Claudin-5 and increased PLVAP expression. Loss of Unc5B decreases BBB Wnt/ß-catenin signaling, and ß-catenin overexpression rescues Unc5B mutant BBB defects. Mechanistically, the Unc5B ligand Netrin-1 enhances Unc5B interaction with the Wnt co-receptor LRP6, induces its phosphorylation and activates Wnt/ß-catenin downstream signaling. Intravenous delivery of antibodies blocking Netrin-1 binding to Unc5B causes a transient BBB breakdown and disruption of Wnt signaling, followed by neurovascular barrier resealing. These data identify Netrin-1-Unc5B signaling as a ligand-receptor pathway that regulates BBB integrity, with implications for CNS diseases.


Assuntos
Barreira Hematoencefálica , Receptores de Netrina , Animais , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Ligantes , Camundongos , Receptores de Netrina/genética , Receptores de Netrina/metabolismo , Netrina-1/genética , Netrina-1/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
6.
Vaccines (Basel) ; 9(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34579223

RESUMO

The COVID-19 pandemic has exposed the extent of global connectivity and collective vulnerability to emerging diseases. From its suspected origins in Wuhan, China, it spread to all corners of the world in a matter of months. The absence of high-performance, rapid diagnostic methods that could identify asymptomatic carriers contributed to its worldwide transmission. Serological tests offer numerous benefits compared to other assay platforms to screen large populations. First-generation assays contain targets that represent proteins from SARS-CoV-2. While they could be quickly produced, each actually has a mixture of specific and non-specific epitopes that vary in their reactivity for antibodies. To generate the next generation of the assay, epitopes were identified in three SARS-Cov-2 proteins (S, N, and Orf3a) by SPOT synthesis analysis. After their similarity to other pathogen sequences was analyzed, 11 epitopes outside of the receptor-binding domain (RBD) of the spike protein that showed high reactivity and uniqueness to the virus. These were incorporated into a ß-barrel protein core to create a highly chimeric protein. Another de novo protein was designed that contained only epitopes in the RBD. In-house ELISAs suggest that both multiepitope proteins can serve as targets for high-performance diagnostic tests. Our approach to bioengineer chimeric proteins is highly amenable to other pathogens and immunological uses.

7.
Angew Chem Int Ed Engl ; 60(37): 20196-20199, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34292655

RESUMO

Allosteric inhibitors of Abl kinase are being explored in the clinic, often in combination with ATP-site inhibitors of Abl kinase. However, there are conflicting data on whether both ATP-competitive inhibitors and myristoyl-site allosteric inhibitors can simultaneously bind Abl kinase. Here, we determine whether there is synergy or antagonism between ATP-competitive inhibitors and allosteric inhibitors of Abl. We observe that clinical ATP-competitive inhibitors are not synergistic with allosteric ABL inhibitors, however, conformation-selective ATP-site inhibitors that modulate the global conformation of Abl can afford synergy. We demonstrate that kinase conformation is the key driver to simultaneously bind two compounds to Abl kinase. Finally, we explore the interaction of allosteric and conformation selective ATP-competitive inhibitors in a series of biochemical and cellular assays.


Assuntos
Trifosfato de Adenosina/farmacologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Trifosfato de Adenosina/química , Domínio Catalítico/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Modelos Moleculares , Inibidores de Proteínas Quinases/química
8.
Circulation ; 144(10): 805-822, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34182767

RESUMO

BACKGROUND: Activin receptor-like kinase 1 (ALK1) is an endothelial transmembrane serine threonine kinase receptor for BMP family ligands that plays a critical role in cardiovascular development and pathology. Loss-of-function mutations in the ALK1 gene cause type 2 hereditary hemorrhagic telangiectasia, a devastating disorder that leads to arteriovenous malformations. Here, we show that ALK1 controls endothelial cell polarization against the direction of blood flow and flow-induced endothelial migration from veins through capillaries into arterioles. METHODS: Using Cre lines that recombine in different subsets of arterial, capillary-venous, or endothelial tip cells, we show that capillary-venous Alk1 deletion was sufficient to induce arteriovenous malformation formation in the postnatal retina. RESULTS: ALK1 deletion impaired capillary-venous endothelial cell polarization against the direction of blood flow in vivo and in vitro. Mechanistically, ALK1-deficient cells exhibited increased integrin signaling interaction with vascular endothelial growth factor receptor 2, which enhanced downstream YAP/TAZ nuclear translocation. Pharmacologic inhibition of integrin or YAP/TAZ signaling rescued flow migration coupling and prevented vascular malformations in Alk1-deficient mice. CONCLUSIONS: Our study reveals ALK1 as an essential driver of flow-induced endothelial cell migration and identifies loss of flow-migration coupling as a driver of arteriovenous malformation formation in hereditary hemorrhagic telangiectasia disease. Integrin-YAP/TAZ signaling blockers are new potential targets to prevent vascular malformations in patients with hereditary hemorrhagic telangiectasia.


Assuntos
Malformações Arteriovenosas , Células Endoteliais , Telangiectasia Hemorrágica Hereditária , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Malformações Arteriovenosas/metabolismo , Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Telangiectasia Hemorrágica Hereditária/mortalidade , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Malformações Vasculares/metabolismo , Camundongos
9.
J Am Soc Nephrol ; 30(11): 2113-2127, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31427367

RESUMO

BACKGROUND: Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocystin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD's mild phenotype in murine models versus in humans has hampered investigating its pathogenesis. METHODS: To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. RESULTS: The genetic interaction was synergistic in both species, with digenic animals exhibiting phenotypes of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction between Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached. Pkhd1 loss did not alter expression, maturation, or localization of the ADPKD polycystin proteins, with no interaction detected between the ARPKD FPC protein and polycystins. RNA-seq analysis in the digenic and monogenic mouse models highlighted the ciliary compartment as a common dysregulated target, with enhanced ciliary expression and length changes in the digenic models. CONCLUSIONS: These data indicate that FPC and the polycystins work independently, with separate disease-causing thresholds; however, a combined protein threshold triggers the synergistic, cystogenic response because of enhanced dysregulation of primary cilia. These insights into pathogenesis highlight possible common therapeutic targets.


Assuntos
Rim Policístico Autossômico Recessivo/etiologia , Receptores de Superfície Celular/genética , Canais de Cátion TRPP/genética , Animais , Cílios/fisiologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Rim Policístico Autossômico Recessivo/genética , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley
10.
Cell Cycle ; 18(19): 2447-2453, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31357909

RESUMO

Epidemiological studies have shown that humans with altered circadian rhythms have higher cancer incidence, with breast cancer being one of the most cited examples. To uncover how circadian disruptions may be correlated with breast cancer and its development, prior studies have assessed the expression of BMAL1 and PER2 core clock genes via RT-qPCR and western blot analyses. These and our own low-resolution data show that BMAL1 and PER2 expression are suppressed and arrhythmic. We hypothesized that oscillations persist in breast cancer cells, but due to limitations of protocols utilized, cannot be observed. This is especially true where dynamic changes may be subtle. In the present work, we generated luciferase reporter cell lines representing high- and low-grade breast cancers to assess circadian rhythms. We tracked signals for BMAL1 and PER2 to determine whether and to what extent oscillations exist and provide initial correlations of circadian rhythm alterations with breast cancer aggression. In contrast to previous studies, where no oscillations were apparent in any breast cancer cell line, our luminometry data reveal that circadian oscillations of BMAL1 and PER2 in fact exist in the low-grade, luminal A MCF7 cells but are not present in high-grade, basal MDA-MB-231 cells. To our knowledge, this is the first evidence of core circadian clock oscillations in breast cancer cells. This work also suggests that circadian rhythms are further disrupted in more aggressive/high tumor grades of breast cancer, and that use of real time luminometry to study additional representatives of breast and other cancer subtypes is merited.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Neoplasias da Mama/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Gradação de Tumores , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Circadianas Period/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA