Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 191: 105369, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963938

RESUMO

One of the most concerning pests that attack strawberries in Brazil is Duponchelia fovealis (Zeller), a non-native moth with no registered control methods to date. Our group recently observed that a fungal consortium formed by two strains of Beauveria bassiana (Balsamo) increased the mortality of D. fovealis more than inoculation with each strain on its own. However, the molecular interaction between the fungal consortium and the caterpillars is unknown. Thus, in this work, we sought to pioneer the evaluation of the molecular interaction between a fungal consortium of B. bassiana and D. fovealis caterpillars. We aimed to understand the biocontrol process involved in this interaction and the defense system of the caterpillar. Seven days after D. fovealis were inoculated with the consortium, the dead and surviving caterpillars were analyzed using GC-MS and LC-MS. Some of the metabolites identified in dead caterpillars have primarily antioxidant action. Other metabolites may have insecticidal potential, such as diltiazem-like and tamsulosin-like compounds, as well as 2,5-dimethoxymandelic acid. In surviving caterpillars, the main mechanisms are pro-inflammatory from 2-Palmitoylglycerol metabolite and the antifungal action of the metabolite Aegle marmelos Alkaloid-C. The metabolites identified in dead caterpillars may explain the increased mortality caused by the consortium due to its antioxidant mechanism, which can suppress the caterpillars' immune system, and insecticide action. In surviving caterpillars, the main resistance mechanisms may involve the stimulus to the immunity and antifungal action.


Assuntos
Beauveria , Inseticidas , Mariposas , Animais , Antifúngicos , Antioxidantes , Insetos , Inseticidas/farmacologia , Controle Biológico de Vetores/métodos
2.
Environ Sci Pollut Res Int ; 30(16): 48559-48570, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36763278

RESUMO

We aimed to evaluate the fungicidal activity of essential oils (EOs) from Baccharis dracunculifolia (Asteraceae), Baccharis uncinella (Asteraceae), Mentha arvensis (Lamiaceae), Salvia officinalis (Lamiaceae), Melaleuca alternifolia (Myrtaceae), and Cymbopogon nardus (Poaceae) in the in vitro control of mycotoxin-producing strains of Aspergillus niger, Aspergillus nomius, Aspergillus flavus, and Fusarium graminearum. EOs' chemical composition was analyzed by gas chromatography-mass spectrometry, and a total of 19, 21, 18, 20, 17, and 15 compounds were identified in B. dracunculifolia, B. uncinella, S. officinalis, M. arvensis, M. alternifolia, and C. nardus EOs, respectively. Contact and volatilization bioassays were performed, for which M. alternifolia and C. nardus EOs had the greatest fungicidal effect (> 90%). Therefore, these EOs were evaluated for minimum inhibitory concentration, medium inhibitory concentration, and sporulation. Effects from the combined use of EOs were also evaluated. EOs interacted in combination, displaying an additive effect against F. graminearum and A. flavus and an antagonistic effect against the remaining isolates. We conclude that C. nardus EO was effective in the control of storage pathogens and that combined EOs can improve their antifungal effects.


Assuntos
Lamiaceae , Óleos Voláteis , Antifúngicos/farmacologia , Óleos Voláteis/química , Fungos , Aspergillus flavus , Testes de Sensibilidade Microbiana , Óleos de Plantas/farmacologia
3.
PLoS One ; 17(7): e0271460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35834517

RESUMO

The use of two or more microorganisms in a microbial consortium has been increasingly applied in the biological control of diseases and pests. Beauveria bassiana is one of the most widely studied fungal species in biological control, yet little is known about its role in fungal consortiums. In a previous study, our group found that a consortium formed by two strains of B. bassiana had significantly greater biocontrol potential against the polyphagous caterpillars Duponchelia fovealis (Lepidoptera: Crambidae) than either strain on its own. In this study, we use GC-MS and LC-MS/MS to evaluate and discuss the metabolomics of the consortium. A total of 21 consortium biomarkers were identified, corresponding to 14 detected by LC-MS/MS and seven by GC-MS. Antioxidant and anti-inflammatory mechanisms are the main properties of the metabolites produced by the consortium. These metabolites can depress the insect's immune system, increasing its vulnerability and, hence, the fungal virulence of the consortium. In light of these results, we propose an action model of insect mortality due to the metabolites secreted by the consortium. The model includes the inhibition of defense mechanisms such as pro-inflammatory interleukin secretion, cell migration, cell aggregation, Dif, Dorsal and Relish gene transcription, and JAK/STAT and JNK signaling pathways. It also promotes the cleaning of oxidative molecules, like ROS, NOS, and H2O2, and the induction of virulence factors.


Assuntos
Beauveria , Lepidópteros , Animais , Beauveria/fisiologia , Cromatografia Líquida , Peróxido de Hidrogênio/metabolismo , Lepidópteros/microbiologia , Espectrometria de Massas em Tandem , Virulência
4.
Insects ; 13(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055935

RESUMO

Lema bilineata Germar (Coleoptera: Chrysomelidae) was recently reported to damage Physalis peruviana crops in Brazil. Given the potential for inflicting damage on other Solanaceae species and the lack of alternatives for controlling this pest, we assessed the pathogenicity of 15 Beauveria isolates against L. bilineata adults in vitro. In addition, three of these isolates were tested for their ovicidal effect against L. bilineata eggs. Fungal strains were isolated from mummified corpses of L. bilineata collected in a non-commercial field in Paraná, Brazil. The isolates were identified as Beauveria bassiana using molecular markers. Lema bilineata adults were susceptible to conidial suspensions of all these isolates at a concentration of 108 conidia mL-1. Deaths caused by fungal extrusion were confirmed. Three strains were found to be more virulent against L. bilineata adults and showed ovicidal effects. This is the first study on entomopathogenic fungi isolated from dead insects collected from P. peruviana crops and tested against L. bilineata carried out in Brazil. The results obtained in the laboratory indicate the high potential of the use of three B. bassiana strains against L. bilineata as a biocontrol agent.

5.
Ciênc. rural (Online) ; 51(9): e20200735, 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1249566

RESUMO

ABSTRACT: Increased production of the Cape gooseberry (Physalis peruviana L.) in Brazil has given rise to interest in identifying the phytophagous species that might damage this crop to inform preventive control and integrated pest management strategies. In this study, we report the occurrence and describe the damage that larvae and adults of Lema bilineata Germar (Coleoptera: Chrysomelidae) cause in P. peruviana. The number of L. bilineata individuals, both larvae and adults, significantly affected the total consumption of P. peruviana leaves. We also report, for the first time, three natural enemies, including a fungus, a fly, and an ant, which are associated with this pest in Brazil and may play a role in biological control strategies.


RESUMO: Fisális, Physalis peruviana L., é uma cultura em expansão no Brasil, dessa forma a identificação de espécies fitófagas que causam danos nesta cultura é importante para desenvolver controle preventivo e estratégias para o Manejo Integrado de Pragas. Neste estudo, relatamos a ocorrência de Lema bilineata Germar (Coleoptera: Chrysomelidae) no cultivo de P. peruviana e descrevemos os danos causados por suas larvas e adultos. Observou-se que o número de indivíduos de L. bilineata, tanto larvas como adultos, influenciaram significativamente o consumo total de folhas de P. peruviana. Além disso, relatamos pela primeira vez a presença de três inimigos naturais, incluindo um fungo, uma mosca e uma formiga, associados a esta praga no Brasil que poderiam ser utilizados como agentes de controle biológico.

6.
Braz J Microbiol ; 50(4): 1091-1098, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31515726

RESUMO

Ochratoxin A (OTA) is a mycotoxin found in several agricultural commodities. Produced by Aspergillus spp., it is nephrotoxic and hepatotoxic and can be carcinogenic. Preventive measures are preventing fungal growth and OTA production. In this study, fungal strains (Rhizopus oryzae, Lichtheimia ramosa, Aspergillus westerdijkiae, Aspergillus niger, Aspergillus tamarii, Aspergillus sp., and Aspergillus fumigatus) isolated from coffee beans were identified for their abilities to inhibit the growth of Aspergillus ochraceus, Aspergillus westerdijkiae, Aspergillus carbonarius, and Aspergillus niger, and OTA production. All fungi strains tested were able to inhibit growth of the four Aspergillus species and OTA production, where A. niger showed the best results in both tests. L. ramosa showed the lowest growth-reducing potential, while the other fungal strains had a growth-reducing potential higher than 70% against all Aspergillus species tested. Regarding OTA production, L. ramosa and Aspergillus sp. completely inhibited the mycotoxin production by A. ochraceus and non-toxigenic strain A. niger completely inhibited OTA production by A. niger. Our findings indicate that the strains tested can be used as an alternative means to control growth of OTA-producing fungi and production of the mycotoxin in coffee beans.


Assuntos
Antibiose , Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/metabolismo , Coffea/microbiologia , Fungos/fisiologia , Ocratoxinas/biossíntese , Sementes/microbiologia , Aspergillus niger/fisiologia , Contaminação de Alimentos/prevenção & controle , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Filogenia
7.
Mycopathologia ; 181(5-6): 353-62, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27028446

RESUMO

Several species of the genus Exophiala are found as opportunistic pathogens on humans, while others cause infections in cold-blooded waterborne vertebrates. Opportunism of these fungi thus is likely to be multifactorial. Ecological traits [thermotolerance and pH tolerance, laccase activity, assimilation of mineral oil, and decolorization of Remazol Brilliant Blue R (RBBR)] were studied in a set of 40 strains of mesophilic Exophiala species focused on the salmonis-clade mainly containing waterborne species. Thermophilic species and waterborne species outside the salmonis-clade were included for comparison. Strains were able to tolerate a wide range of pHs, although optimal growth was observed between pH 4.0 and 5.5. All strains tested were laccase positive. Strains were able to grow in the presence of the compounds (mineral oil and RBBR) with some differences in assimilation patterns between strains tested and also were capable of degrading the main chromophore of RBBR. The study revealed that distantly related mesophilic species behave similarly, and no particular trend in evolutionary adaptation was observed.


Assuntos
Exophiala/isolamento & purificação , Exophiala/fisiologia , Micoses/microbiologia , Micoses/veterinária , Infecções Oportunistas/microbiologia , Infecções Oportunistas/veterinária , Animais , Antraquinonas/metabolismo , Exophiala/crescimento & desenvolvimento , Exophiala/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lacase/análise , Óleo Mineral/metabolismo , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA