Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 15(11): e0009940, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34767551

RESUMO

The Human T-cell Leukemia Virus-1 (HTLV-1)-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a devastating neurodegenerative disease with no effective treatment, which affects an increasing number of people in Brazil. Immune cells from the adaptive compartment are involved in disease manifestation but whether innate cell functions participate in disease occurrence has not been evaluated. In this study, we analyzed innate cell responses at steady state and after blood cell stimulation using an agonist of the toll-like receptor (TLR)7/8-signaling pathway in blood samples from HTLV-1-infected volunteers, including asymptomatic carriers and HAM/TSP patients. We observed a lower response of IFNα+ DCs and monocytes in HAM/TSP compared to asymptomatic carriers, as a potential consequence of corticosteroid treatments. In contrast, a higher frequency of monocytes producing MIP-1α and pDC producing IL-12 was detected in HAM/TSP blood samples, together with higher IFNγ responsiveness of NK cells, suggesting an increased sensitivity to inflammatory response in HAM/TSP patients compared to asymptomatic carriers. This sustained inflammatory responsiveness could be linked or be at the origin of the neuroinflammatory status in HAM/TSP patients. Therefore, the mechanism underlying this dysregulations could shed light onto the origins of HAM/TSP disease.


Assuntos
Imunidade Inata , Paraparesia Espástica Tropical/imunologia , Adulto , Brasil , Estudos de Coortes , Células Dendríticas/imunologia , Feminino , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Interleucina-12/genética , Interleucina-12/imunologia , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Paraparesia Espástica Tropical/virologia
2.
PLoS Pathog ; 15(2): e1007589, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30818370

RESUMO

Human T Lymphotropic virus (HTLV) infection can persist in individuals resulting, at least in part, from viral escape of the innate immunity, including inhibition of type I interferon response in infected T-cells. Plasmacytoid dendritic cells (pDCs) are known to bypass viral escape by their robust type I interferon production. Here, we demonstrated that pDCs produce type I interferons upon physical cell contact with HTLV-infected cells, yet pDC activation inversely correlates with the ability of the HTLV-producing cells to transmit infection. We show that pDCs sense surface associated-HTLV present with glycan-rich structure referred to as biofilm-like structure, which thus represents a newly described viral structure triggering the antiviral response by pDCs. Consistently, heparan sulfate proteoglycans and especially the cell surface pattern of terminal ß-galactoside glycosylation, modulate the transmission of the immunostimulatory RNA to pDCs. Altogether, our results uncover a function of virus-containing cell surface-associated glycosylated structures in the activation of innate immunity.


Assuntos
Células Dendríticas/fisiologia , Infecções por HTLV-I/metabolismo , Citocinas , Galactosídeos/metabolismo , Glicosilação , Infecções por HTLV-I/imunologia , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Vírus Linfotrópico T Tipo 2 Humano/imunologia , Vírus Linfotrópico T Tipo 2 Humano/patogenicidade , Humanos , Imunidade Inata/fisiologia , Interferon Tipo I/imunologia , Interferon-alfa/imunologia , Interferon-alfa/metabolismo , Células Jurkat , Linfócitos T/imunologia , Linfócitos T/fisiologia
3.
Viruses ; 10(12)2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563084

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a neural chronic inflammation, called HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and of a malignant lymphoproliferation, called the adult T-cell leukemia/lymphoma (ATLL). The mechanisms through which the HTLV-1 induces these diseases are still unclear, but they might rely on immune alterations. HAM/TSP is associated with an impaired production of pro-inflammatory cytokines and chemokines, such as IFN-γ, TNF-α, CXCL9, or CXCL10. ATLL is associated with high levels of IL-10 and TGF-ß. These immunosuppressive cytokines could promote a protumoral micro-environment. Moreover, HTLV-1 infection impairs the IFN-I production and signaling, and favors the IL-2, IL-4, and IL-6 expression. This contributes both to immune escape and to infected cells proliferation. Here, we review the landscape of cytokine dysregulations induced by HTLV-1 infection and the role of these cytokines in the HTLV-1-associated diseases progression.


Assuntos
Citocinas/imunologia , Infecções por HTLV-I/imunologia , Leucemia-Linfoma de Células T do Adulto/imunologia , Paraparesia Espástica Tropical/imunologia , Transdução de Sinais , Animais , Quimiocina CXCL9/imunologia , Quimiocinas/imunologia , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Interferon gama/imunologia , Interleucina-10/imunologia , Leucemia-Linfoma de Células T do Adulto/virologia , Camundongos , Paraparesia Espástica Tropical/virologia , Fator de Necrose Tumoral alfa/imunologia
5.
Viruses ; 10(1)2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29267225

RESUMO

Going back to their discovery in the early 1980s, both the Human T-cell Leukemia virus type-1 (HTLV-1) and the Human Immunodeficiency Virus type-1 (HIV-1) greatly fascinated the virology scene, not only because they were the first human retroviruses discovered, but also because they were associated with fatal diseases in the human population. In almost four decades of scientific research, both viruses have had different fates, HTLV-1 being often upstaged by HIV-1. However, although being very close in terms of genome organization, cellular tropism, and viral replication, HIV-1 and HTLV-1 are not completely commutable in terms of treatment, especially because of the opposite fate of the cells they infect: death versus immortalization, respectively. Nowadays, the antiretroviral therapies developed to treat HIV-1 infected individuals and to limit HIV-1 spread among the human population have a poor or no effect on HTLV-1 infected individuals, and thus, do not prevent the development of HTLV-1-associated diseases, which still lack highly efficient treatments. The present review mainly focuses on the course of HTLV-1 infection, from the initial infection of the host to diseases development and associated treatments, but also investigates HIV-1/HTLV-1 co-infection events and their impact on diseases development.


Assuntos
Infecções por HTLV-I/terapia , Infecções por HTLV-I/transmissão , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Linfócitos T CD4-Positivos/virologia , Coinfecção/terapia , Coinfecção/virologia , Descoberta de Drogas , Infecções por HIV/complicações , Infecções por HTLV-I/complicações , Infecções por HTLV-I/virologia , Humanos , Leucemia-Linfoma de Células T do Adulto/terapia , Leucemia-Linfoma de Células T do Adulto/virologia , Paraparesia Espástica Tropical/terapia , Paraparesia Espástica Tropical/virologia , Replicação Viral
7.
PLoS Pathog ; 13(4): e1006353, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28426803

RESUMO

Human T lymphotropic Virus type 1 (HTLV-1) is the etiological agent of Adult T cell Leukemia/Lymphoma (ATLL) and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). Both CD4+ T-cells and dendritic cells (DCs) infected with HTLV-1 are found in peripheral blood from HTLV-1 carriers. We previously demonstrated that monocyte-derived IL-4 DCs are more susceptible to HTLV-1 infection than autologous primary T-cells, suggesting that DC infection precedes T-cell infection. However, during blood transmission, breast-feeding or sexual transmission, HTLV-1 may encounter different DC subsets present in the blood, the intestinal or genital mucosa respectively. These different contacts may impact HTLV-1 ability to infect DCs and its subsequent transfer to T-cells. Using in vitro monocyte-derived IL-4 DCs, TGF-ß DCs and IFN-α DCs that mimic DCs contacting HTLV-1 in vivo, we show here that despite their increased ability to capture HTLV-1 virions, IFN-α DCs restrict HTLV-1 productive infection. Surprisingly, we then demonstrate that it is not due to the antiviral activity of type-I interferon produced by IFN-α DCs, but that it is likely to be linked to a distinct trafficking route of HTLV-1 in IL-4 DCs vs. IFN-α DCs. Finally, we demonstrate that, in contrast to IL-4 DCs, IFN-α DCs are impaired in their capacity to transfer HTLV-1 to CD4 T-cells, both after viral capture and trans-infection and after their productive infection. In conclusion, the nature of the DCs encountered by HTLV-1 upon primo-infection and the viral trafficking route through the vesicular pathway of these cells determine the efficiency of viral transmission to T-cells, which may condition the fate of infection.


Assuntos
Antivirais/farmacologia , Citocinas/imunologia , Células Dendríticas/imunologia , Infecções por HTLV-I/imunologia , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Paraparesia Espástica Tropical/imunologia , Adulto , Células Dendríticas/virologia , Infecções por HTLV-I/transmissão , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Interferon Tipo I/imunologia , Modelos Biológicos , Paraparesia Espástica Tropical/patologia , Paraparesia Espástica Tropical/virologia , Linfócitos T/imunologia , Linfócitos T/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA