Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(9): e2307461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37917032

RESUMO

Although electro-organic synthesis is currently receiving renewed interest because of its potential to enable sustainability in chemical processes to value-added products, challenges in process development persist: For reductive transformations performed in protic media, an inherent issue is the limited choice of metallic cathode materials that can effectively suppress the parasitic hydrogen evolution reaction (HER) while maintaining a high activity toward the targeted electro-organic reaction. Current development trends are aimed at avoiding the previously used HER-suppressing elements (Cd, Hg, and Pb) because of their toxicity. Here, this work reports the rational design of highly porous foam-type binary and ternary electrocatalysts with reduced Pb content. Optimized cathodes are tested in electro-organic reductions using an oxime to nitrile transformation as a model reaction relevant for the synthesis of fine chemicals. Their electrocatalytic performance is compared with that of the model CuSn7Pb15 bronze alloy that has recently been endorsed as the best cathode replacement for bare Pb electrodes. All developed metal foam catalysts outperform both bare Pb and the CuSn7Pb15 benchmark in terms of chemical yield and energetic efficiency. Moreover, post-electrolysis analysis of the crude electrolyte mixture and the cathode's surfaces through inductively coupled plasma mass spectrometry (ICP-MS) and scanning electron microscopy (SEM), respectively, reveal the foam catalysts' elevated resistance to cathodic corrosion.

2.
Small Methods ; 6(9): e2200369, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35810472

RESUMO

The advantage of employing gas diffusion electrodes (GDEs) in carbon dioxide reduction electrolyzers is that they allow CO2 to reach the catalyst in gaseous state, enabling current densities that are orders of magnitude larger than what is achievable in standard H-type cells. The gain in the reaction rate comes, however, at the cost of stability issues related to flooding that occurs when excess electrolyte permeates the micropores of the GDE, effectively blocking the access of CO2 to the catalyst. For electrolyzers operated with alkaline electrolytes, flooding leaves clear traces within the GDE in the form of precipitated potassium (hydrogen)carbonates. By analyzing the amount and distribution of precipitates, and by quantifying potassium salts transported through the GDE during operation (electrolyte perspiration), important information can be gained with regard to the extent and means of flooding. In this work, a novel combination of energy dispersive X-ray and inductively coupled plasma mass spectrometry based methods is employed to study flooding-related phenomena in GDEs differing in the abundance of cracks in the microporous layer. It is concluded that cracks play an important role in the electrolyte management of CO2 electrolyzers, and that electrolyte perspiration through cracks is paramount in avoiding flooding-related performance drops.

3.
Chimia (Aarau) ; 75(3): 163-168, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33766198

RESUMO

Metallic nanoparticles of different shape can be used as efficient electrocatalysts for many technologically and environmentally relevant processes, like the electroreduction of CO2. Intense research is thus targeted at finding the morphology of nanosized features that best suits catalytic needs. In order to control the shape and size distribution of the designed nanoobjects, and to prevent their aggregation, synthesis routes often rely on the use of organic capping agents (surfactants). It is known, however, that these agents tend to remain adsorbed on the surface of the synthesized nanoparticles and may significantly impair their catalytic performance, both in terms of overall yield and of product selectivity. It thus became a standard procedure to apply certain methods (e.g. involving UV-ozone or plasma treatments) for the removal of capping agents from the surface of nanoparticles, before they are used as catalysts. Proper design of the operating procedure of the electrocatalysis process may, however, render such cleaning steps unnecessary. In this paper we use poly-vinylpyrrolidone (PVP) capped Ag nanocubes to demonstrate a mere electrochemical, operando activation method. The proposed method is based on an observed hysteresis of the catalytic yield of CO (the desired product of CO2 electroreduction) as a function of the applied potential. When as-synthesized nanocubes were directly used for CO2 electroreduction, the CO yield was rather low at moderate overpotentials. However, following a potential excursion to more negative potentials, most of the (blocking) PVP was irreversibly removed from the catalyst surface, allowing a significantly higher catalytic yield even under less harsh operating conditions. The described hysteresis of the product distribution is shown to be of transient nature, and following operando activation by a single 'break-in' cycle, a truly efficient catalyst was obtained that retained its stability during long hours of operation.

4.
Anal Chem ; 92(6): 4301-4308, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32081004

RESUMO

The use of rotating disk electrodes (RDEs) is probably the most convenient way of studying simple electrode reactions under well-defined transport conditions. Standard RDEs become, however, less expedient when the studied electrode process is a complex one, leading to the formation of various reaction products. In these cases, the accurate detection and quantification of the formed products are desirable. If the formed products are gaseous, then the usual way of quantifying them is the use of online gas chromatography (GC), a method that is not compatible with open RDE cells. In order to overcome these difficulties, we present here a sophisticated inverted RDE (iRDE) cell design. The design combines various advantages: it is amenable to the same mathematical treatment as standard (downward-facing) RDEs; it can be operated airtight and coupled to online GC; and due to its upward-facing design, the electrode surface is less prone to blockage by any formed gas bubbles. The iRDE&GC design is tested using simple model reactions and is demonstratively used for studying the electrochemical reduction of CO2, accompanied by parasitic hydrogen evolution, on a silver electrode.

5.
Chimia (Aarau) ; 73(11): 922-927, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31753073

RESUMO

In this work, we discuss the application of a gas diffusion electrode (GDE) setup for benchmarking electrocatalysts for the reductive conversion of CO2 (CO2 RR: CO2 reduction reaction). Applying a silver nanowire (Ag-NW) based catalyst, it is demonstrated that in the GDE setup conditions can be reached, which are relevant for the industrial conversion of CO2 to CO. This reaction is part of the so-called 'Rheticus' process that uses the CO for the subsequent production of butanol and hexanol based on a fermentation approach. In contrast to conventional half-cell measurements using a liquid electrolyte, in the GDE setup CO2 RR current densities comparable to technical cells (>100 mA cm-2) are reached without suffering from mass transport limitations of the CO2 reactant gas. The results are of particular importance for designing CO2 RR catalysts exhibiting high faradaic efficiencies towards CO at technological reaction rates.

6.
ACS Appl Mater Interfaces ; 10(37): 31355-31365, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30136836

RESUMO

In this work, we aim to develop a Zn-based metal foam catalyst with very large specific area suitable for efficient CO production. Its manufacture is based on the dynamic hydrogen bubble template method that consists of the superposition of metal deposition and hydrogen evolution at the solid-liquid interface. We employed Cu ions in the Zn2+-rich electroplating bath as foaming agent. The concentration of Cu as foaming agent was systematically studied and an optimized Zn94Cu6 foam alloy was developed, which, to the best of our knowledge, is the most selective Zn-based CO2 electrocatalyst toward CO in aqueous bicarbonate solution (FECO = 90% at -0.95 V vs reversible hydrogen electrode). This high efficiency is ascribed to the combination of high density of low-coordinated active sites and preferential Zn(101) over Zn(002) texturing. X-ray photoelectron spectroscopy investigations demonstrate that the actual catalyst material is shaped upon reduction of an oxide/hydroxide-terminating surface under CO2 electrolysis conditions. Moreover, intentional stressing by oxidation at room conditions proved to be beneficial for further activation of the catalyst. Identical location scanning electron microscopy imaging before and after CO2 electrolysis and long-term electrolysis experiments also showed that the developed Zn94Cu6 foam catalyst is both structurally and chemically stable at reductive conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA