RESUMO
BACKGROUND: Preand probiotics may help restore a dysbiotic oral ecosystem. The first years of life provide a window of opportunity to modulate the composition of the oral microbiota and prevent disease. OBJECTIVES: The aim of the present study was to investigate the effect of a tablet containing inactivated Ligilactobacillus salivarius CECT 5317 and the cranberry extract on the development of caries in cariesactive preschool children. MATERIAL AND METHODS: The study employed a randomized, placebo-controlled, double-blind design. Preschool children (N = 73) with at least one active carious lesion were enrolled and randomly assigned to the test group or the placebo group. The intervention period was 3 months. Caries was assessed according to the International Caries Detection and Assessment System (ICDAS) II criteria at baseline and after 9 months, and oral hygiene was evaluated with the simplified oral hygiene index (OHI-S). The salivary counts of Streptococcus mutans and Lactobacillus spp. were determined at baseline, and then after 3 and 9 months through the conventional cultivation on TYCSB and MRS agar, respectively. RESULTS: Sixty children completed the trial (a dropout rate of 19%). The baseline caries prevalence was high in both groups (~71%) and there were no major differences between the groups with regard to background variables. The 9-month incidence of initial carious lesions (ICDAS 1+2) was significantly lower in the test group as compared to the placebo group (p < 0.05). The plaque levels, and the salivary counts of S. mutans and Lactobacillus spp. remained unchanged in both groups throughout the study. CONCLUSIONS: A daily intake of a tablet containing a paraprobiotic and the cranberry extract reduced the 9-month incidence of initial non-cavitated carious lesions in caries-active preschool children. The present study is one of the first to show the impact of synbiotics on the development of caries in children.
RESUMO
BACKGROUND: Carbon ion beams are well accepted as densely ionizing radiation with a high linear energy transfer (LET). However, the current clinical practice does not fully exploit the highest possible dose-averaged LET (LETd) and, consequently, the biological potential in the target. This aspect becomes worse in larger tumors for which inferior clinical outcomes and corresponding lower LETd was reported. PURPOSE: The vicinity to critical organs in general and the inferior overall survival reported for larger sacral chordomas treated with carbon ion radiotherapy (CIRT), makes the treatment of such tumors challenging. In this work it was aimed to increase the LETd in large volume tumors while maintaining the relative biological effectiveness (RBE)-weighted dose, utilizing the LETd optimization functions of a commercial treatment planning system (TPS). METHODS: Ten reference sequential boost carbon ion treatment plans, designed to mimic clinical plans for large sacral chordoma tumors, were generated. High dose clinical target volumes (CTV-HD) larger than 250 cm 3 $250 \,{\rm cm}^{3}$ were considered as large targets. The total RBE-weighted median dose prescription with the local effect model (LEM) was D RBE , 50 % = 73.6 Gy $\textrm {D}_{\rm RBE, 50\%}=73.6 \,{\rm Gy}$ in 16 fractions (nine to low dose and seven to high dose planning target volume). No LETd optimization was performed in the reference plans, while LETd optimized plans used the minimum LETd (Lmin) optimization function in RayStation 2023B. Three different Lmin values were investigated and specified for the seven boost fractions: L min = 60 keV / µ m $\textrm {L}_{\rm min}=60 \,{\rm keV}/{\umu }{\rm m}$ , L min = 80 keV / µ m $\textrm {L}_{\rm min}=80 \,{\rm keV}/{\umu }{\rm m}$ and L min = 100 keV / µ m $\textrm {L}_{\rm min}=100 \,{\rm keV}/{\umu }{\rm m}$ . To compare the LETd optimized against reference plans, LETd and RBE-weighted dose based goals similar to and less strict than clinical ones were specified for the target. The goals for the organs at risk (OAR) remained unchanged. Robustness evaluation was studied for eight scenarios ( ± 3.5 % $\pm 3.5\%$ range uncertainty and ± 3 mm $\pm 3 \,{\rm mm}$ setup uncertainty along the main three axes). RESULTS: The optimization method with L min = 60 keV / µ m $\textrm {L}_{\rm min}=60 \,{\rm keV}/{\umu }{\rm m}$ resulted in an optimal LETd distribution with an average increase of LET d , 98 % ${\rm {LET}}_{{\rm {d,}}98\%}$ (and LET d , 50 % ${\rm {LET}}_{{\rm {d,}}50\%}$ ) in the CTV-HD by 8.9 ± 1.5 keV / µ m $8.9\pm 1.5 \,{\rm keV}/{\umu }{\rm m}$ ( 27 % $27\%$ ) (and 6.9 ± 1.3 keV / µ m $6.9\pm 1.3 \,{\rm keV}/{\umu }{\rm m}$ ( 17 % $17\%$ )), without significant difference in the RBE-weighted dose. By allowing ± 5 % $\pm 5\%$ over- and under-dosage in the target, the LET d , 98 % ${\rm {LET}}_{{\rm {d,}}98\%}$ (and LET d , 50 % ${\rm {LET}}_{{\rm {d,}}50\%}$ ) can be increased by 11.3 ± 1.2 keV / µ m $11.3\pm 1.2 \,{\rm keV}/{\umu }{\rm m}$ ( 34 % $34\%$ ) (and 11.7 ± 3.4 keV / µ m $11.7\pm 3.4 \,{\rm keV}/{\umu }{\rm m}$ ( 29 % $29\%$ )), using the optimization parameters L min = 80 keV / µ m $\textrm {L}_{\rm min}=80 \,{\rm keV}/{\umu }{\rm m}$ . The pass rate for the OAR goals in the LETd optimized plans was in the same level as the reference plans. LETd optimization lead to less robust plans compared to reference plans. CONCLUSIONS: Compared to conventionally optimized treatment plans, the LETd in the target was increased while maintaining the RBE-weighted dose using TPS LETd optimization functionalities. Regularly assessing RBE-weighted dose robustness and acquiring more in-room images remain crucial and inevitable aspects during treatment.
Assuntos
Cordoma , Radioterapia com Íons Pesados , Transferência Linear de Energia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Sacro , Cordoma/radioterapia , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Coluna Vertebral/radioterapia , Doses de RadiaçãoRESUMO
To minimize radiation-induced lumbosacral neuropathy (RILSN), we employed sacral-nerve-sparing optimized carbon-ion therapy strategy (SNSo-CIRT) in treating 35 patients with pelvic sarcomas/chordomas. Plans were optimized using Local Effect Model-I (LEM-I), prescribed DRBE|LEM-I|D50% (median dose to HD-PTV) = 73.6 (70.4-76.8) Gy (RBE)/16 fractions. Sacral nerves were contoured between L5-S3 levels. DRBE|LEM-I to 5% of sacral nerves-to-spare (outside HD-CTV) (DRBE|LEM-I|D5%) were restricted to <69 Gy (RBE). The median follow-up was 25 months (range of 2-53). Three patients (9%) developed late RILSN (≥G3) after an average period of 8 months post-CIRT. The RILSN-free survival at 2 years was 91% (CI, 81-100). With SNSo-CIRT, DRBE|LEM-I|D5% for sacral nerves-to-spare = 66.9 ± 1.9 Gy (RBE), maintaining DRBE|LEM-I to 98% of HD-CTV (DRBE|LEM-I|D98%) = 70 ± 3.6 Gy (RBE). Two-year OS and LC were 100% and 93% (CI, 84-100), respectively. LETd and DRBE with modified-microdosimetric kinetic model (mMKM) were recomputed retrospectively. DRBE|LEM-I and DRBE|mMKM were similar, but DRBE-filtered-LETd was higher in sacral nerves-to-spare in patients with RILSN than those without. At DRBE|LEM-I cutoff = 64 Gy (RBE), 2-year RILSN-free survival was 100% in patients with <12% of sacral nerves-to-spare voxels receiving LETd > 55 keV/µm than 75% (CI, 54-100) in those with ≥12% of voxels (p < 0.05). DRBE-filtered-LETd holds promise for the SNSo-CIRT strategy but requires longer follow-up for validation.
RESUMO
PURPOSE: Carbon ion radiotherapy (CIRT) relies on relative biological effectiveness (RBE)-weighted dose calculations. Japanese clinics predominantly use the microdosimetric kinetic model (MKM), while European centers utilize the local effect model (LEM). Despite both models estimating RBE-distributions in tissue, their physical and mathematical assumptions differ, leading to significant disparities in RBE-weighted doses. Several European clinics adopted Japanese treatment schedules, necessitating adjustments in dose prescriptions and organ at risk (OAR) constraints. In the context of these two clinically used standards for RBE-weighted dose estimation, the objective of this study was to highlight specific scenarios for which the translations between models diverge, as shortcomings between them can influence clinical decisions. METHODS: Our aim was to discuss planning strategies minimizing those discrepancies, ultimately striving for more accurate and robust treatments. Evaluations were conducted in a virtual water phantom and patient CT-geometry, optimizing LEM RBE-weighted dose first and recomputing MKM thereafter. Dose-averaged linear energy transfer (LETd) distributions were also assessed. RESULTS: Results demonstrate how various parameters influence LEM/MKM translation. Similar LEM-dose distributions lead to markedly different MKM-dose distributions and variations in LETd. Generally, a homogeneous LEM RBE-weighted dose aligns with lower MKM values in most of the target volume. Nevertheless, paradoxical MKM hotspots may emerge (at the end of the range), potentially influencing clinical outcomes. Therefore, translation between models requires great caution. CONCLUSIONS: Understanding the relationship between these two clinical standards enables combining European and Japanese based experiences. The implementation of optimal planning strategies ensures the safety and acceptability of the clinical plan for both models and therefore enhances plan robustness from the RBE-weighted dose and LETd distribution point of view. This study emphasizes the importance of optimal planning strategies and the need for comprehensive CIRT plan quality assessment tools. In situations where simultaneous LEM and MKM computation capabilities are lacking, it can provide guidance in plan design, ultimately contributing to enhanced CIRT outcomes.
Assuntos
Radioterapia com Íons Pesados , Órgãos em Risco , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Humanos , Radioterapia com Íons Pesados/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Radiobiologia , Neoplasias/radioterapia , Transferência Linear de Energia , Cinética , Radioterapia de Intensidade Modulada/métodosRESUMO
PURPOSE: Intracerebral radiation-induced contrast enhancement (RICE) can occur after photon as well as proton beam therapy (PBT). This study evaluated the incidence, characteristics, and risk factors of RICE after PBT delivered to, or in direct proximity to, the brain and its effect on health-related quality of life (HRQoL). METHODS AND MATERIALS: Four hundred twenty-one patients treated with pencil beam scanning PBT between 2017 and 2021 were included. Follow-up included clinical evaluation and contrast-enhanced magnetic resonance imaging at 3, 6, and 12 months after treatment completion and annually thereafter. RICE was graded according to Common Terminology Criteria for Adverse Events version 4, and HRQoL parameters were assessed via European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ)-C30 questionnaires. RESULTS: The median follow-up was 24 months (range, 6-54), and median dose to 1% relative volume of noninvolved central nervous system (D1%CNS) was 54.3 Gy relative biologic effectiveness (RBE; range, 30-76 Gy RBE). The cumulative RICE incidence was 15% (n = 63), of which 10.5% (n = 44) were grade 1, 3.1% (n = 13) were grade 2, and 1.4% (n = 6) were grade 3. No grade 4 or 5 events were observed. Twenty-six of 63 RICE (41.3%) had resolved at the latest follow-up. The median onset after PBT and duration of RICE in patients in whom the lesions resolved were 11.8 and 9.0 months, respectively. On multivariable analysis, D1%CNS > 57.6 Gy RBE, previous in-field radiation, and diabetes mellitus were identified as significant risk factors for RICE development. Previous radiation was the only factor influencing the risk of symptomatic RICE. After PBT, general HRQoL parameters were not compromised. In a matched cohort analysis of 54/50 patients with and without RICE, no differences in global health score or functional and symptom scales were seen. CONCLUSIONS: The overall incidence of clinically relevant RICE after PBT is very low and has no significant negative effect on long-term patient QoL.
Assuntos
Terapia com Prótons , Lesões por Radiação , Neoplasias da Base do Crânio , Humanos , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Neoplasias da Base do Crânio/diagnóstico por imagem , Neoplasias da Base do Crânio/radioterapia , Qualidade de Vida , Lesões por Radiação/patologia , Dosagem Radioterapêutica , Encéfalo/efeitos da radiaçãoRESUMO
BACKGROUND: Large tumor size has been reported as a predicting factor for inferior clinical outcome in carbon ion radiotherapy (CIRT). Besides the clinical factors accompanied with such tumors, larger tumors receive typically more low linear energy transfer (LET) contributions than small ones which may be the underlying physical cause. Although dose averaged LET is often used as a single parameter descriptor to quantify the beam quality, there is no evidence that this parameter is the optimal clinical predictor for the complex mixed radiation fields in CIRT. PURPOSE: Purpose of this study was to investigate on a novel dosimetric quantity, namely high-LET-dose ( D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ , the physical dose filtered based on an LET threshold) as a single parameter estimator to differentiate between carbon ion treatment plans (cTP) with a small and large tumor volume. METHODS: Ten cTPs with a planning target volume, PTV ≥ 500 cm 3 $\mathrm{PTV}\ge {500}\,{{\rm cm}^{3}}$ (large) and nine with a PTV < 500 cm 3 $\mathrm{PTV}<{500}\,{{\rm cm}^{3}}$ (small) were selected for this study. To find a reasonable LET threshold ( L thr $\textrm {L}_{\textrm {thr}}$ ) that results in a significant difference in terms of D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ , the voxel based normalized high-LET-dose ( D Ì > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ ) distribution in the clinical target volume (CTV) was studied on a subset (12 out of 19 cTPs) for 18 LET thresholds, using standard distribution descriptors (mean, variance and skewness). The classical dose volume histogram concept was used to evaluate the D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ and D Ì > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ distributions within the target of all 19 cTPs at the before determined L thr $\textrm {L}_{\textrm {thr}}$ . Statistical significance of the difference between the two groups in terms of mean D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ and D Ì > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ volume histogram parameters was evaluated by means of (two-sided) t-test or Mann-Whitney-U-test. In addition, the minimum target coverage at the above determined L thr $\textrm {L}_{\textrm {thr}}$ was compared and validated against three other thresholds to verify its potential in differentiation between small and large volume tumors. RESULTS: An L thr $\textrm {L}_{\textrm {thr}}$ of approximately 30 keV / µ m ${30}\,{\rm keV/}\umu {\rm m}$ was found to be a reasonable threshold to classify the two groups. At this threshold, the D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ and D Ì > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ were significantly larger ( p < 0.05 $p<0.05$ ) in small CTVs. For the small tumor group, the near-minimum and median D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ (and D Ì > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ ) in the CTV were in average 9.3 ± 1.5 Gy $9.3\pm {1.5}\,{\rm Gy}$ (0.31 ± 0.08) and 13.6 ± 1.6 Gy $13.6\pm {1.6}\,{\rm Gy}$ (0.46 ± 0.06), respectively. For the large tumors, these parameters were 6.6 ± 0.2 Gy $6.6\pm {0.2}\,{\rm Gy}$ (0.20 ± 0.01) and 8.6 ± 0.4 Gy $8.6\pm {0.4}\,{\rm Gy}$ (0.28 ± 0.02). The difference between the two groups in terms of mean near-minimum and median D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ ( D Ì > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ ) was 2.7 Gy (11%) and 5.0 Gy (18%), respectively. CONCLUSIONS: The feasibility of high-LET-dose based evaluation was shown in this study where a lower D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ was found in cTPs with a large tumor size. Further investigation is needed to draw clinical conclusions. The proposed methodology in this work can be utilized for future high-LET-dose based studies.
Assuntos
Radioterapia com Íons Pesados , Neoplasias , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Transferência Linear de Energia , Radioterapia de Intensidade Modulada/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapiaRESUMO
To improve outcomes in large sarcomas/chordomas treated with CIRT, there has been recent interest in LET optimization. We evaluated 22 pelvic sarcoma/chordoma patients treated with CIRT [large: HD-CTV ≥ 250 cm3 (n = 9), small: HD-CTV < 250 cm3 (n = 13)], DRBE|LEM-I = 73.6 (70.4-73.6) Gy (RBE)/16 fractions, using the local effect model-I (LEM-I) optimization and modified-microdosimetric kinetic model (mMKM) recomputation. We observed that to improve high-LETd distribution in large tumors, at least 27 cm3 (low-LETd region) of HD-CTV should receive LETd of ≥33 keV/µm (p < 0.05). Hence, LETd optimization using 'distal patching' was explored in a treatment planning setting (not implemented clinically yet). Distal-patching structures were created to stop beams 1-2 cm beyond the HD-PTV-midplane. These plans were reoptimized and DRBE|LEM-I, DRBE|mMKM, and LETd were recomputed. Distal patching increased (a) LETd50% in HD-CTV (from 38 ± 3.4 keV/µm to 47 ± 8.1 keV/µm), (b) LETdmin in low-LETd regions of the HD-CTV (from 32 ± 2.3 keV/µm to 36.2 ± 3.6 keV/µm), (c) the GTV fraction receiving LETd of ≥50 keV/µm, (from <10% to >50%) and (d) the high-LETd component in the central region of the GTV, without significant compromise in DRBE distribution. However, distal patching is sensitive to setup/range uncertainties, and efforts to ascertain robustness are underway, before routine clinical implementation.
RESUMO
Aluminium (Al) is the most ubiquitous metal in the Earth's crust. Even though its toxicity is well-documented, the role of Al in the pathogenesis of several neurological diseases remains debatable. To establish the basic framework for future studies, we review literature reports on Al toxicokinetics and its role in Alzheimer's disease (AD), autism spectrum disorder (ASD), alcohol use disorder (AUD), multiple sclerosis (MS), Parkinson's disease (PD), and dialysis encephalopathy (DE) from 1976 to 2022. Despite poor absorption via mucosa, the biggest amount of Al comes with food, drinking water, and inhalation. Vaccines introduce negligible amounts of Al, while the data on skin absorption (which might be linked with carcinogenesis) is limited and requires further investigation. In the above-mentioned diseases, the literature shows excessive Al accumulation in the central nervous system (AD, AUD, MS, PD, DE) and epidemiological links between greater Al exposition and their increased prevalence (AD, PD, DE). Moreover, the literature suggests that Al has the potential as a marker of disease (AD, PD) and beneficial results of Al chelator use (such as cognitive improvement in AD, AUD, MS, and DE cases).
Assuntos
Doença de Alzheimer , Transtorno do Espectro Autista , Esclerose Múltipla , Doença de Parkinson , Humanos , Alumínio/toxicidade , Transtorno do Espectro Autista/patologia , Encéfalo/patologia , Doença de Alzheimer/patologia , Sistema Nervoso Central/patologia , Doença de Parkinson/patologia , Esclerose Múltipla/patologiaRESUMO
BACKGROUND AND PURPOSE: Studies have shown large variations in stopping-power ratio (SPR) prediction from computed tomography (CT) across European proton centres. To standardise this process, a step-by-step guide on specifying a Hounsfield look-up table (HLUT) is presented here. MATERIALS AND METHODS: The HLUT specification process is divided into six steps: Phantom setup, CT acquisition, CT number extraction, SPR determination, HLUT specification, and HLUT validation. Appropriate CT phantoms have a head- and body-sized part, with tissue-equivalent inserts in regard to X-ray and proton interactions. CT numbers are extracted from a region-of-interest covering the inner 70% of each insert in-plane and several axial CT slices in scan direction. For optimal HLUT specification, the SPR of phantom inserts is measured in a proton beam and the SPR of tabulated human tissues is computed stoichiometrically at 100 MeV. Including both phantom inserts and tabulated human tissues increases HLUT stability. Piecewise linear regressions are performed between CT numbers and SPRs for four tissue groups (lung, adipose, soft tissue, and bone) and then connected with straight lines. Finally, a thorough but simple validation is performed. RESULTS: The best practices and individual challenges are explained comprehensively for each step. A well-defined strategy for specifying the connection points between the individual line segments of the HLUT is presented. The guide was tested exemplarily on three CT scanners from different vendors, proving its feasibility. CONCLUSION: The presented step-by-step guide for CT-based HLUT specification with recommendations and examples can contribute to reduce inter-centre variations in SPR prediction.
Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Consenso , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , CalibragemRESUMO
BACKGROUND: The increasing number of studies dealing with linear energy transfer (LET)-based evaluation and optimization in the field of carbon ion radiotherapy (CIRT) indicates the rising demand for LET implementation in commercial treatment planning systems (TPS). Benchmarking studies could play a key role in detecting (and thus preventing) computation errors prior implementing such functionalities in a TPS. PURPOSE: This in silico study was conducted to benchmark the following two LET-related functionalities in a commercial TPS against Monte Carlo simulations: (1) dose averaged LET (LETd ) scoring and (2) physical dose filtration based on LET for future LET-based treatment plan evaluation and optimization studies. METHODS: The LETd scoring and LET-based dose filtering (in which the deposited dose can be separated into the dose below and above the user specified LET threshold) functionalities for carbon ions in the research version RayStation (RS) 9A-IonPG TPS (RaySearch Laboratories, Sweden) were benchmarked against GATE/Geant4 simulations. Pristine Bragg peaks (BPs) and cuboid targets, positioned at different depths in a homogeneous water phantom and a setup with heterogeneity were used for this study. RESULTS: For all setups (homogeneous and heterogeneous), the mean absolute (and relative) LETd difference was less than 1 keV/ µ $\umu$ m (3.5%) in the plateau and target and less than 2 keV/ µ $\umu$ m (8.3%) in the fragmentation tail. The maximum local differences were 4 and 6 keV/ µ $\umu$ m, respectively. The mean absolute (and relative) physical dose differences for both low- and high-LET doses were less than 1 cGy (1.5%) in the plateau, target and tail with a maximum absolute difference of 2 cGy. CONCLUSIONS: No computation error was found in the tested functionalities except for LETd in lateral direction outside the target, showing the limitation of the implemented monochrome model in the tested TPS version.
Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Benchmarking , Transferência Linear de Energia , Carbono/uso terapêutico , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador , Dosagem RadioterapêuticaRESUMO
Aim: Data on the safety of moderately hypofractionated proton beam therapy (PBT) are limited. The aim of this study is to compare the acute toxicity and early quality of life (QoL) outcomes of normofractionated (nPBT) and hypofractionated PBT (hPBT). Material and methods: We prospectively compared acute toxicity and QoL between patients treated with nPBT (dose per fraction 1.8-2.3 Gy, n = 90) and hPBT (dose per fraction 2.5-3.1 Gy, n = 49) in following locations: head and neck (H&N, n = 85), abdomen and pelvis (A&P, n = 43), and other soft tissue (ST, n = 11). The toxicities were grouped into categories-mucosal, skin, and other sites-and evaluated according to the Common Terminology Criteria for Adverse Events (CTCAE) version 4.03 at baseline, treatment completion, and 3 months after PBT completion. QoL was evaluated with the European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire (QLQ)-C30 scale for all locations and additionally with EORTC QLQ-HN35 for H&N patients. Results: Overall, the highest toxicity grades of G0, G1, G2, and G3 were observed in 7 (5%), 40 (28.8%), 78 (56.1%), and 15 (10.8%) patients, respectively. According to organ and site, no statistically significant differences were detected in the majority of toxicity comparisons (66.7%). For A&P, hPBT showed a more favorable toxicity profile as compared to nPBT with a higher frequency of G0 and G1 and a lower frequency of G2 and G3 events (p = 0.04), more patients with improvement (95.7% vs 70%, p = 0.023), and full resolution of toxicities (87% vs 50%, p = 0.008). Skin toxicity was unanimously milder for hPBT compared to nPBT in A&P and ST locations (p = 0.018 and p = 0.025, respectively). No significant differences in QoL were observed in 97% of comparisons for QLQ-C30 scale except for loss of appetite in H&N patients (+33.3 for nPBT and 0 for hPBT, p = 0.02) and role functioning for A&P patients (0 for nPBT vs +16.7 hPBT, p = 0.003). For QLQ-HN35, 97.9% of comparisons did not reveal significant differences, with pain as the only scale varying between the groups (-8.33 vs -25, p = 0.016). Conclusion: Hypofractionated proton therapy offers non-inferior early safety and QoL as compared to normofractionated irradiation and warrants further clinical investigation.
RESUMO
BACKGROUND: Carbon ion radiotherapy (CIRT) treatment planning is based on relative biological effectiveness (RBE) weighted dose calculations. A large amount of clinical evidence for CIRT was collected in Japan with RBE estimated by the modified microdosimetric kinetic model (MKM) while all European centres apply the first version of the local effect model (LEM). Japanese schedules have been used in Europe with adapted prescription dose and organs at risk (OAR) dose constraints. Recently, less conservative adapted LEM constraints have been implemented in clinical practice. The aim of this study was to analyse the new set of LEM dose constraints for brain parenchyma, brainstem and optic system considering both RBE models and evaluating early clinical data. MATERIAL AND METHODS: 31 patients receiving CIRT at MedAustron were analysed using the RayStation v9A planning system by recalculating clinical LEM-based plans in MKM. Dose statistics (D1cm3, D5cm3, D0.1cm3, D0.7cm3, D10%, D20%) were extracted for relevant critical OARs. Curve fitting for those values was performed, resulting in linear quadratic translation models. Clinical and radiological toxicity was evaluated. RESULTS: Based on derived fits, currently applied LEM constraints matched recommended MKM constraints with deviations between -8% and +3.9%. For particular cases, data did not follow the expected LEM vs MKM trends resulting in outliers. Radiological (asymptomatic) toxicity was detected in two outlier cases. CONCLUSION: Respecting LEM constraints does not automatically ensure that MKM constraints are met. Constraints for both RBE models need to be fulfilled for future CIRT patients at MedAustron. Careful selection of planning strategies is essential.
Assuntos
Radioterapia com Íons Pesados , Órgãos em Risco , Humanos , Eficiência Biológica Relativa , Dosagem Radioterapêutica , Radioterapia com Íons Pesados/métodos , Carbono/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodosRESUMO
BACKGROUND: We present the early results of a novel partial bulky-tumor irradiation using particles for patients with recurrent unresectable bulky tumors who failed previous state-of-the-art treatments. METHODS: First, eleven consecutive patients were treated from March 2020 until December 2021. The targeted Bystander Tumor Volume (BTV) was created by subtracting 1 cm from Gross Tumor Volume (GTV) surface. It reflected approximately 30% of the central GTV volume and was irradiated with 30-45 Gy RBE (Relative Biological Effectiveness) in three consecutive fractions. The Peritumoral Immune Microenvironment (PIM) surrounding the GTV, containing nearby tissues, blood-lymphatic vessels and lymph nodes, was considered an organ at risk (OAR) and protected by highly conservative constraints. RESULTS: With the median follow up of 6.3 months, overall survival was 64% with a median survival of 6.7 months; 46% of patients were progression-free. The average tumor volume regression was 61% from the initial size. The symptom control rate was 91%, with an average increase of the Karnofsky Index of 20%. The abscopal effect has been observed in 60% of patients. CONCLUSIONS: Partial bulky-tumor irradiation is an effective, safe and well tolerated treatment for patients with unresectable recurrent bulky disease. Abscopal effects elucidate an immunogenic pathway contribution. Extensive tumor shrinkage in some patients might permit definitive treatment-otherwise previously impossible.
RESUMO
BACKGROUND: Dose constraints are of paramount importance for the outcome of any radiotherapy treatment. In this article, we report dose-volume constraints as well as currently used fractionation schedules for carbon ion radiotherapy as applied in MedAustron (Wiener Neustadt, Austria). MATERIALS AND METHODS: For fractionation schedules, both German and Japanese regimes were used. From the clinical experience of National Institute of Radiological Sciences (Chiba, Japan) and Heidelberg Ion Therapy (Heidelberg, Germany; formerly GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany) and the work by colleagues in Centro Nazionale Adroterapia Oncologica (Pavia, Italy) recalculating the dose from the microdosimetric kinetic model to the local effect model, we have set the dose constraints for critical organs of the head and neck area. Where no clinical data was available, an educated guess was made, based on data available from photon and proton series. RESULTS: We report the constraints for the optic nerve and chiasm, brainstem, spinal cord, cochlea, brain parenchyma, salivary gland, eye and adnexa, and mandibular/maxillary bone; constraints are grouped based on a fractionation scheme (German versus Japanese) and the risk of toxicity (safe, low to middle, and middle to high). CONCLUSION: We think validation of dose constraints should present a relevant part of the activity of any carbon ion radiotherapy facility, and we anticipate future multicentric, joint evaluations.
RESUMO
PURPOSE: Experimental assessment of inter-centre variation and absolute accuracy of stopping-power-ratio (SPR) prediction within 17 particle therapy centres of the European Particle Therapy Network. MATERIAL AND METHODS: A head and body phantom with seventeen tissue-equivalent materials were scanned consecutively at the participating centres using their individual clinical CT scan protocol and translated into SPR with their in-house CT-number-to-SPR conversion. Inter-centre variation and absolute accuracy in SPR prediction were quantified for three tissue groups: lung, soft tissues and bones. The integral effect on range prediction for typical clinical beams traversing different tissues was determined for representative beam paths for the treatment of primary brain tumours as well as lung and prostate cancer. RESULTS: An inter-centre variation in SPR prediction (2σ) of 8.7%, 6.3% and 1.5% relative to water was determined for bone, lung and soft-tissue surrogates in the head setup, respectively. Slightly smaller variations were observed in the body phantom (6.2%, 3.1%, 1.3%). This translated into inter-centre variation of integral range prediction (2σ) of 2.9%, 2.6% and 1.3% for typical beam paths of prostate-, lung- and primary brain-tumour treatments, respectively. The absolute error in range exceeded 2% in every fourth participating centre. The consideration of beam hardening and the execution of an independent HLUT validation had a positive effect, on average. CONCLUSION: The large inter-centre variations in SPR and range prediction justify the currently clinically used margins accounting for range uncertainty, which are of the same magnitude as the inter-centre variation. This study underlines the necessity of higher standardisation in CT-number-to-SPR conversion.
Assuntos
Terapia com Prótons , Humanos , Masculino , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , IncertezaRESUMO
Background and purpose: A collaborative network between proton therapy (PT) centres in Trento in Italy, Poland, Austria, Czech Republic and Sweden (IPACS) was founded to implement trials and harmonize PT. This is the first report of IPACS with the aim to show the level of harmonization that can be achieved for proton therapy planning of head and neck (sino-nasal) cancer.Methods: CT-data sets of five patients were included. During several face-to-face and online meetings, a common treatment planning protocol was developed. Each centre used its own treatment planning system (TPS) and planning approach with some restrictions specified in the treatment planning protocol. In addition, volumetric modulated arc therapy (VMAT) photon plans were created.Results: For CTV1, the average Dmedian was 59.3 ± 2.4 Gy(RBE) for protons and 58.8 ± 2.0 Gy(RBE) for VMAT (aim was 56 Gy(RBE)). For CTV2, the average Dmedian was 71.2 ± 1.0 Gy(RBE) for protons and 70.6 ± 0.4 Gy(RBE) for VMAT (aim was 70 Gy(RBE)). The average D2% for the spinal cord was 25.1 ± 8.5 Gy(RBE) for protons and 47.6 ± 1.4 Gy(RBE) for VMAT. The average D2% for chiasm was 46.5 ± 4.4 Gy(RBE) for protons and 50.8 ± 1.4 Gy(RBE) for VMAT, respectively. Robust evaluation was performed and showed the least robust plans for plans with a low number of beams.Discussion: In conclusion, several influences on harmonization were identified: adherence/interpretation to/of the protocol, available technology, experience in treatment planning and use of different beam arrangements. In future, all OARs that should be included in the optimization need to be specified in order to further harmonize treatment planning.
Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Cooperação Internacional , Órgãos em Risco , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tronco Encefálico/efeitos da radiação , Cóclea/efeitos da radiação , Europa (Continente) , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Laringe/efeitos da radiação , Neoplasias Nasais/diagnóstico por imagem , Neoplasias Nasais/radioterapia , Nervo Óptico/efeitos da radiação , Órgãos em Risco/efeitos da radiação , Neoplasias dos Seios Paranasais/diagnóstico por imagem , Neoplasias dos Seios Paranasais/radioterapia , Glândula Parótida/efeitos da radiação , Fótons/uso terapêutico , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X , Carga TumoralRESUMO
BACKGROUND AND PURPOSE: Stopping-power ratios (SPRs) are used in particle therapy to calculate particle range in patients. The heuristic CT-to-SPR conversion (Hounsfield Look-Up-Table, HLUT), needed for treatment planning, depends on CT-scan and reconstruction parameters as well as the specific HLUT definition. To assess inter-centre differences in these parameters, we performed a survey-based qualitative evaluation, as a first step towards better standardisation of CT-based SPR derivation. MATERIALS AND METHODS: A questionnaire was sent to twelve particle therapy centres (ten from Europe and two from USA). It asked for details on CT scanners, image acquisition and reconstruction, definition of the HLUT, body-region specific HLUT selection, investigations of beam-hardening and experimental validations of the HLUT. Technological improvements were rated regarding their potential to improve SPR accuracy. RESULTS: Scan parameters and HLUT definition varied widely. Either the stoichiometric method (eight centres) or a tissue-substitute-only HLUT definition (three centres) was used. One centre combined both methods. The number of HLUT line segments varied widely between two and eleven. Nine centres had investigated influence of beam-hardening, often including patient-size dependence. Ten centres had validated their HLUT experimentally, with very different validation schemes. Most centres deemed dual-energy CT promising for improving SPR accuracy. CONCLUSIONS: Large inter-centre variability was found in implementation of CT scans, image reconstruction and especially in specification of the CT-to-SPR conversion. A future standardisation would reduce time-intensive institution-specific efforts and variations in treatment quality. Due to the interdependency of multiple parameters, no conclusion can be drawn on the derived SPR accuracy and its inter-centre variability.
RESUMO
The ratio of patients who need a treatment adaptation due to anatomical variations at least once during the treatment course is significantly higher in light ion beam therapy (LIBT) than in photon therapy. The ballistic behaviour of ion beams makes them more sensitive to changes. Hence, the delivery of LIBT has always been supported by state of art image guidance. On the contrary CBCT technology was adapted for LIBT quite late. Adaptive concepts are being implemented more frequently in photon therapy and also efficient workflows are needed for LIBT. The MedAustron Ion Beam Therapy Centre was designed to allow the clinical implementation of adaptive image-guided concepts. The aim of this paper is to describe the current status and the potential future use of the technology installed at MedAustron. Specifically addressed is the beam delivery system, the patient alignment system, the treatment planning system as well as the Record & Verify system. Finally, an outlook is given on how high quality X-ray imaging, MR image guidance, fast and automated treatment planning as well as in vivo range verification methods could be integrated.
Assuntos
Neoplasias/radioterapia , Radioterapia/instrumentação , Radioterapia/métodos , Institutos de Câncer/organização & administração , Institutos de Câncer/normas , Institutos de Câncer/tendências , Humanos , Neoplasias/diagnóstico por imagem , Radioterapia/normas , Radioterapia/tendências , Planejamento da Radioterapia Assistida por Computador/tendênciasRESUMO
UNLABELLED: Anatomical changes in the head-and-neck (H&N) region during the course of treatment can cause deteriorated dose distributions. Different replanning strategies were investigated for volumetric modulated arc therapy (VMAT) and intensity-modulated proton therapy (IMPT). MATERIAL AND METHODS: For six H&N patients two repeated computed tomography (CT) and magnetic resonance (MR) (CT1/MR1 at week 2 and CT2/MR2 at week 4) scans were acquired additionally to the initial planning CT/MR. Organs-at-risk (OARs) and three targets (CTV70Gy, CTV63Gy, CTV56Gy) were delineated on MRs and transferred to respective CT data set. Simultaneously integrated boost plans were created using VMAT (two arcs) and IMPT (four beams). To assess the need of replanning the initial VMAT and IMPT plans were recalculated on repeated CTs. Furthermore, VMAT and IMPT plans were replanned on the repeated CTs. A Demon algorithm was used for deformable registration of the repeated CTs with the initial CT and utilized for dose accumulation. Total dose estimations were performed to compare ART versus standard treatment strategies. RESULTS: Dosimetric evaluation of recalculated plans on CT1 and CT2 showed increasing OAR doses for both, VMAT and IMPT. The target coverage of recalculated VMAT plans was considered acceptable in three cases, while for all IMPT plans it dropped. Adaptation of the treatment reduced D2% for brainstem by 6.7 Gy for VMAT and by 8 Gy for IMPT, for particular patients. These D2% reductions were reaching 9 Gy and 14 Gy for the spinal cord. ART improved target dose homogeneity, especially for protons, i.e. D2% decreased by up to 8 Gy while D98% increased by 1.2 Gy. CONCLUSION: ART showed benefits for both modalities. However, as IMPT is more conformal, the magnitude of dosimetric changes was more pronounced compared to VMAT. Large anatomic variations had a severe impact on treatment plan quality for both VMAT and IMPT. ART is justified in those cases irrespective of treatment modalities.