Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446468

RESUMO

In this work, we study the influence of the different surface terminations of c-plane sapphire substrates on the synthesis of graphene via plasma-enhanced chemical vapor deposition. The different terminations of the sapphire surface are controlled by a plasma process. A design of experiments procedure was carried out to evaluate the major effects governing the plasma process of four different parameters: i.e., discharge power, time, pressure and gas employed. In the characterization of the substrate, two sapphire surface terminations were identified and characterized by means of contact angle measurements, being a hydrophilic (hydrophobic) surface and the fingerprint of an Al- (OH-) terminated surface, respectively. The defects within the synthesized graphene were analyzed by Raman spectroscopy. Notably, we found that the ID/IG ratio decreases for graphene grown on OH-terminated surfaces. Furthermore, two different regimes related to the nature of graphene defects were identified and, depending on the sapphire terminated surface, are bound either to vacancy or boundary-like defects. Finally, studying the density of defects and the crystallite area, as well as their relationship with the sapphire surface termination, paves the way for increasing the crystallinity of the synthesized graphene.

2.
Nanoscale Adv ; 5(7): 1890-1909, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36998660

RESUMO

Crystal phase quantum dots (QDs) are formed during the axial growth of III-V semiconductor nanowires (NWs) by stacking different crystal phases of the same material. In III-V semiconductor NWs, both zinc blende (ZB) and wurtzite (WZ) crystal phases can coexist. The band structure difference between both crystal phases can lead to quantum confinement. Thanks to the precise control in III-V semiconductor NW growth conditions and the deep knowledge on the epitaxial growth mechanisms, it is nowadays possible to control, down to the atomic level, the switching between crystal phases in NWs forming the so-called crystal phase NW-based QDs (NWQDs). The shape and size of the NW bridge the gap between QDs and the macroscopic world. This review is focused on crystal phase NWQDs based on III-V NWs obtained by the bottom-up vapor-liquid-solid (VLS) method and their optical and electronic properties. Crystal phase switching can be achieved in the axial direction. In contrast, in the core/shell growth, the difference in surface energies between different polytypes can enable selective shell growth. One reason for the very intense research in this field is motivated by their excellent optical and electronic properties both appealing for applications in nanophotonics and quantum technologies.

3.
Nanoscale Adv ; 4(16): 3330-3341, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131713

RESUMO

In this work we demonstrate a two-fold selectivity control of InAs shells grown on crystal phase and morphology engineered GaAs nanowire (NW) core templates. This selectivity occurs driven by differences in surface energies of the NW core facets. The occurrence of the different facets itself is controlled by either forming different crystal phases or additional tuning of the core NW morphology. First, in order to study the crystal phase selectivity, GaAs NW cores with an engineered crystal phase in the axial direction were employed. A crystal phase selective growth of InAs on GaAs was found for high growth rates and short growth times. Secondly, the facet-dependant selectivity of InAs growth was studied on crystal phase controlled GaAs cores which were additionally morphology-tuned by homoepitaxial overgrowth. Following this route, the original hexagonal cores with {110} sidewalls were converted into triangular truncated NWs with ridges and predominantly {112}B facets. By precisely tuning the growth parameters, the growth of InAs is promoted over the ridges and reduced over the {112}B facets with indications of also preserving the crystal phase selectivity. In all cases (different crystal phase and facet termination), selectivity is lost for extended growth times, thus, limiting the total thickness of the shell grown under selective conditions. To overcome this issue we propose a 2-step growth approach, combining a high growth rate step followed by a low growth rate step. The control over the thickness of the InAs shells while maintaining the selectivity is demonstrated by means of a detailed transmission electron microscopy analysis. This proposed 2-step growth approach enables new functionalities in 1-D structures formed by using bottom-up techniques, with a high degree of control over shell thickness and deposition selectivity.

4.
Molecules ; 27(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744863

RESUMO

A comparative study was carried out on the chemical, structural and thermal properties of candelilla wax from four wax-producing communities in Mexico, which was obtained by two extraction processes, the conventional one using sulfuric acid (SA) and an eco-friendly alternative process using citric acid (CA) as the extracting agent. The waxes were analyzed by basic chemistry (acidity, saponification, ester indexes, and others), color, Fourier transform infrared spectroscopy (FTIR), Raman micro-spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and hardness and brittleness measurements. The waxes obtained by the environmentally friendly process showed differences in their physicochemical properties when compared to waxes from the conventional process. In addition, they showed some improvements, such as lighter shades and harder waxes, suggesting that the new environmentally friendly process is a viable option.


Assuntos
Ésteres , Ceras , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier , Ceras/química
5.
Int J Biol Macromol ; 164: 771-782, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682039

RESUMO

Nowadays, there are great research interest in polyhydroxybutyrate (PHB) recovery protocols that reduce the use of organic solvents and efficiently recover this bacterial biopolymer. The present study reports an extraction protocol assisted by ultrasound, which is a rapid protocol that increases the amount of polymeric matter extracted, reduces the cellular digestion step with sodium hypochlorite and eliminates the use of organic solvents. Likewise, characterization studies by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) demonstrated that the biopolymer recovered by this protocol is PHB homopolymer with a major thermal-resistance and crystalline properties. Besides, in this study are reported the thermic and crystalline differences between the PHB obtained from the fermentation of complex carbohydrates (agavins) and simple sugars. The biopolymer obtained by this rapid extraction protocol would be suitable for ecological and biomedical applications, due to the low melting temperature, less than 50% crystallinity, and the lack of lipopolysaccharides. Therefore, this extraction protocol might represent an alternative to the traditional protocol based on NaOCl-chloroform and is part of the green trend to improve the PHB production.


Assuntos
Biopolímeros/química , Fermentação , Hidroxibutiratos/química , Biopolímeros/efeitos da radiação , Varredura Diferencial de Calorimetria , Hidroxibutiratos/efeitos da radiação , Poliésteres/química , Solventes/química , Temperatura , Ondas Ultrassônicas , Difração de Raios X
6.
Nanotechnology ; 31(29): 295301, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259808

RESUMO

In this manuscript, we demonstrate the potential of replacing the standard bottom anti-reflective coating (BARC) with a polymethylglutarimide (PMGI) layer for wafer-scale nanofabrication by means of deep-UV displacement talbot lithography (DTL). PMGI is functioning as a developable non-UV sensitive bottom anti-reflective coating (DBARC). After introducing the fabrication process using a standard BARC-based coating and the novel PMGI-based one, the DTL nanopatterning capabilities for both coatings are compared by means of the fabrication of etched nanoholes in a dielectric layer and metal nanodots made by lift-off. Improvement of DTL capabilities are attributed to a reduction of process complexity by avoiding the use of O2 plasma etching of the BARC layer. We show the capacity of this approach to produce nanoholes or nanodots with diameters ranging from 95 to 200 nm at a wafer-scale using only one mask and a proper exposing dose. The minimum diameter of the nanoholes is reduced from 118 to 95 nm when using the PMGI-based coating instead of the BARC-based one. The possibilities opened by the PMGI-based coating are illustrated by the successful fabrication of an array of nanoholes with sub-100 nm diameter for GaAs nanowire growth on a 2″ GaAs wafer, a 2″ nanoimprint lithography (NIL) master stamp, and an array of Au nanodots made by lift-off on a 4″ silica wafer. Therefore, DTL possess the potential for wafer-scale manufacturing of nano-engineered materials.

7.
Nanoscale ; 12(2): 888-894, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31833520

RESUMO

We report on the synthesis of vertical InP nanowire arrays on (001) InP and Si substrates using template-assisted vapour-liquid-solid growth. A thick silicon oxide layer was first deposited on the substrates. The samples were then patterned by electron beam lithography and deep dry etching through the oxide layer down to the substrate surface. Gold seed particles were subsequently deposited in the holes of the pattern by the use of pulse electrodeposition. The subsequent growth of nanowires by the vapour-liquid-solid method was guided towards the [001] direction by the patterned oxide template, and displayed a high growth yield with respect to the array of holes in the template. In order to confirm the versatility and robustness of the process, we have also demonstrated guided growth of InP nanowire p-n junctions and InP/InAs/InP nanowire heterostructures on (001) InP substrates. Our results show a promising route to monolithically integrate III-V nanowire heterostructure devices with commercially viable (001) silicon platforms.

8.
Sensors (Basel) ; 13(10): 13917-27, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24132228

RESUMO

Low-dimensional InN/InGaN quantum dots (QDs) are demonstrated for realizing highly sensitive and efficient potentiometric biosensors owing to their unique electronic properties. The InN QDs are biochemically functionalized. The fabricated biosensor exhibits high sensitivity of 97 mV/decade with fast output response within two seconds for the detection of cholesterol in the logarithmic concentration range of 1 × 10⁻6 M to 1 × 10⁻³ M. The selectivity and reusability of the biosensor are excellent and it shows negligible response to common interferents such as uric acid and ascorbic acid. We also compare the biosensing properties of the InN QDs with those of an InN thin film having the same surface properties, i.e., high density of surface donor states, but different morphology and electronic properties. The sensitivity of the InN QDs-based biosensor is twice that of the InN thin film-based biosensor, the EMF is three times larger, and the response time is five times shorter. A bare InGaN layer does not produce a stable response. Hence, the superior biosensing properties of the InN QDs are governed by their unique surface properties together with the zero-dimensional electronic properties. Altogether, the InN QDs-based biosensor reveals great potential for clinical diagnosis applications.


Assuntos
Técnicas Biossensoriais/instrumentação , Colesterol/análise , Condutometria/instrumentação , Gálio/química , Índio/química , Pontos Quânticos , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA