Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mSystems ; 7(4): e0039522, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35913192

RESUMO

Vascular dysfunction and organ failure are two distinct, albeit highly interconnected, clinical outcomes linked to morbidity and mortality in human sepsis. The mechanisms driving vascular and parenchymal damage are dynamic and display significant molecular cross talk between organs and tissues. Therefore, assessing their individual contribution to disease progression is technically challenging. Here, we hypothesize that dysregulated vascular responses predispose the organism to organ failure. To address this hypothesis, we have evaluated four major organs in a murine model of Staphylococcus aureus sepsis by combining in vivo labeling of the endothelial cell surface proteome, data-independent acquisition (DIA) mass spectrometry, and an integrative computational pipeline. The data reveal, with unprecedented depth and throughput, that a septic insult evokes organ-specific proteome responses that are highly compartmentalized, synchronously coordinated, and significantly correlated with the progression of the disease. These responses include abundant vascular shedding, dysregulation of the intrinsic pathway of coagulation, compartmentalization of the acute phase response, and abundant upregulation of glycocalyx components. Vascular cell surface proteome changes were also found to precede bacterial invasion and leukocyte infiltration into the organs, as well as to precede changes in various well-established cellular and biochemical correlates of systemic coagulopathy and tissue dysfunction. Importantly, our data suggest a potential role for the vascular proteome as a determinant of the susceptibility of the organs to undergo failure during sepsis. IMPORTANCE Sepsis is a life-threatening response to infection that results in immune dysregulation, vascular dysfunction, and organ failure. New methods are needed for the identification of diagnostic and therapeutic targets. Here, we took a systems-wide approach using data-independent acquisition (DIA) mass spectrometry to track the progression of bacterial sepsis in the vasculature leading to organ failure. Using a murine model of S. aureus sepsis, we were able to quantify thousands of proteins across the plasma and parenchymal and vascular compartments of multiple organs in a time-resolved fashion. We showcase the profound proteome remodeling triggered by sepsis over time and across these compartments. Importantly, many vascular proteome alterations precede changes in traditional correlates of organ dysfunction, opening a molecular window for the discovery of early markers of sepsis progression.


Assuntos
Bacteriemia , Sepse , Camundongos , Humanos , Animais , Staphylococcus aureus , Proteoma , Insuficiência de Múltiplos Órgãos/metabolismo , Modelos Animais de Doenças
2.
J Histochem Cytochem ; 69(2): 105-119, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33494649

RESUMO

Heparan sulfate proteoglycans consist of a small family of proteins decorated with one or more covalently attached heparan sulfate glycosaminoglycan chains. These chains have intricate structural patterns based on the position of sulfate groups and uronic acid epimers, which dictate their ability to engage a large repertoire of heparan sulfate-binding proteins, including extracellular matrix proteins, growth factors and morphogens, cytokines and chemokines, apolipoproteins and lipases, adhesion and growth factor receptors, and components of the complement and coagulation system. This review highlights recent progress in the characterization of the so-called "heparan sulfate interactome," with a major focus on systems-wide strategies as a tool for discovery and characterization of this subproteome. In addition, we compiled all heparan sulfate-binding proteins reported in the literature to date and grouped them into a few major functional classes by applying a networking approach.


Assuntos
Proteoglicanas de Heparan Sulfato , Heparitina Sulfato , Animais , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos
3.
J Biol Chem ; 295(9): 2804-2821, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31964714

RESUMO

Animal cells express heparan sulfate proteoglycans that perform many important cellular functions by way of heparan sulfate-protein interactions. The identification of membrane heparan sulfate-binding proteins is challenging because of their low abundance and the need for extensive enrichment. Here, we report a proteomics workflow for the identification and characterization of membrane-anchored and extracellular proteins that bind heparan sulfate. The technique is based on limited proteolysis of live cells in the absence of denaturation and fixation, heparin-affinity chromatography, and high-resolution LC-MS/MS, and we designate it LPHAMS. Application of LPHAMS to U937 monocytic and primary murine and human endothelial cells identified 55 plasma membrane, extracellular matrix, and soluble secreted proteins, including many previously unidentified heparin-binding proteins. The method also facilitated the mapping of the heparin-binding domains, making it possible to predict the location of the heparin-binding site. To validate the discovery feature of LPHAMS, we characterized one of the newly-discovered heparin-binding proteins, C-type lectin 14a (CLEC14A), a member of the C-type lectin family that modulates angiogenesis. We found that the C-type lectin domain of CLEC14A binds one-to-one to heparin with nanomolar affinity, and using molecular modeling and mutagenesis, we mapped its heparin-binding site. CLEC14A physically interacted with other glycosaminoglycans, including endothelial heparan sulfate and chondroitin sulfate E, but not with neutral or sialylated oligosaccharides. The LPHAMS technique should be applicable to other cells and glycans and provides a way to expand the repertoire of glycan-binding proteins for further study.


Assuntos
Moléculas de Adesão Celular/metabolismo , Endotélio/química , Heparitina Sulfato/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Proteômica/métodos , Animais , Sítios de Ligação , Células Cultivadas , Endotélio/citologia , Humanos , Camundongos , Ligação Proteica , Células U937
4.
J Biol Chem ; 293(26): 10202-10219, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29739851

RESUMO

Structural characterization of glycosaminoglycans remains a challenge but is essential for determining structure-function relationships between glycosaminoglycans and the biomolecules with which they interact and for gaining insight into the biosynthesis of glycosaminoglycans. We have recently reported that xyloside-primed chondroitin/dermatan sulfate derived from a human breast carcinoma cell line, HCC70, has cytotoxic effects and shown that it differs in disaccharide composition from nontoxic chondroitin/dermatan sulfate derived from a human breast fibroblast cell line, CCD-1095Sk. To further investigate the structural requirements for the cytotoxic effect, we developed a novel LC-MS/MS approach based on reversed-phase dibutylamine ion-pairing chromatography and negative-mode higher-energy collision dissociation and used it in combination with cell growth studies and disaccharide fingerprinting. This strategy enabled detailed structural characterization of linkage regions, internal oligosaccharides, and nonreducing ends, revealing not only differences between xyloside-primed chondroitin/dermatan sulfate from HCC70 cells and CCD-1095Sk cells, but also sialylation of the linkage region and previously undescribed methylation and sulfation of the nonreducing ends. Although the xyloside-primed chondroitin/dermatan sulfate from HCC70 cells was less complex in terms of presence and distribution of iduronic acid than that from CCD-1095Sk cells, both glucuronic acid and iduronic acid appeared to be essential for the cytotoxic effect. Our data have moved us one step closer to understanding the structure of the cytotoxic chondroitin/dermatan sulfate from HCC70 cells primed on xylosides and demonstrate the suitability of the LC-MS/MS approach for structural characterization of glycosaminoglycans.


Assuntos
Glicosaminoglicanos/química , Glicosaminoglicanos/toxicidade , Glicosídeos/química , Linhagem Celular Tumoral , Sulfatos de Condroitina/química , Cromatografia Líquida , Dermatan Sulfato/química , Dissacarídeos/análise , Humanos , Espectrometria de Massas em Tandem
5.
J Biol Chem ; 293(1): 379-389, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29138239

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) are important structural components of connective tissues in essentially all metazoan organisms. In vertebrates, CSPGs are involved also in more specialized processes such as neurogenesis and growth factor signaling. In invertebrates, however, knowledge of CSPGs core proteins and proteoglycan-related functions is relatively limited, even for Caenorhabditis elegans. This nematode produces large amounts of non-sulfated chondroitin in addition to low-sulfated chondroitin sulfate chains. So far, only nine core proteins (CPGs) have been identified, some of which have been shown to be involved in extracellular matrix formation. We recently introduced a protocol to characterize proteoglycan core proteins by identifying CS-glycopeptides with a combination of biochemical enrichment, enzymatic digestion, and nano-scale liquid chromatography MS/MS analysis. Here, we have used this protocol to map the chondroitin glycoproteome in C. elegans, resulting in the identification of 15 novel CPG proteins in addition to the nine previously established. Three of the newly identified CPGs displayed homology to vertebrate proteins. Bioinformatics analysis of the primary protein sequences revealed that the CPG proteins altogether contained 19 unique functional domains, including Kunitz and endostatin domains, suggesting direct involvement in protease inhibition and axonal migration, respectively. The analysis of the core protein domain organization revealed that all chondroitin attachment sites are located in unstructured regions. Our results suggest that CPGs display a much greater functional and structural heterogeneity than previously appreciated and indicate that specialized proteoglycan-mediated functions evolved early in metazoan evolution.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteoglicanas de Sulfatos de Condroitina/isolamento & purificação , Sulfatos de Condroitina/metabolismo , Cromatografia em Gel/métodos , Glicopeptídeos/metabolismo , Proteoglicanas/metabolismo , Espectrometria de Massas em Tandem/métodos
6.
J Am Soc Mass Spectrom ; 28(2): 229-241, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27873218

RESUMO

Purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl-O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides. Graphical Abstract ᅟ.


Assuntos
Sulfatos de Condroitina/química , Cromatografia Líquida/métodos , Glicopeptídeos/química , Polissacarídeos/química , Espectrometria de Massas em Tandem/métodos , Acetilgalactosamina/química , alfa-Globulinas/química , alfa-Globulinas/urina , Sequência de Carboidratos , Humanos , Ácido N-Acetilneuramínico/química , Fosforilação , Polissacarídeos/análise , Sódio/química
7.
Sci Rep ; 6: 34537, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694851

RESUMO

Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans.


Assuntos
Condroitina ABC Liase/química , Sulfatos de Condroitina/química , Heparitina Sulfato/química , Proteoglicanas/química , Animais , Linhagem Celular Tumoral , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Camundongos , Proteoglicanas/metabolismo
8.
Chemistry ; 22(3): 1114-24, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26663535

RESUMO

Post-translational glycosylation of proteins play key roles in cellular processes and the site-specific characterisation of glycan structures is critical to understanding these events. Given the challenges regarding identification of glycan isomers, glycoproteomic studies generally rely on the assumption of conserved biosynthetic pathways. However, in a recent study, we found characteristically different HexNAc oxonium ion fragmentation patterns that depend on glycan structure. Such patterns could be used to distinguish between glycopeptide structural isomers. To acquire a mechanistic insight, deuterium-labelled glycopeptides were prepared and analysed. We found that the HexNAc-derived m/z 126 and 144 oxonium ions, differing in mass by H2 O, had completely different structures and that high-mannose N-glycopeptides generated abundant Hex-derived oxonium ions. We describe the oxonium ion decomposition mechanisms and the relative abundance of oxonium ions as a function of collision energy for a number of well-defined glycan structures, which provide important information for future glycoproteomic studies.


Assuntos
Glicopeptídeos/química , Oniocompostos/química , Polissacarídeos/química , Glicopeptídeos/metabolismo , Glicosilação , Isomerismo , Espectrometria de Massas , Espectrometria de Massas em Tandem
9.
Mol Cell Proteomics ; 14(12): 3118-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407992

RESUMO

The inter-α-trypsin inhibitor complex is a macromolecular arrangement of structurally related heavy chain proteins covalently cross-linked to the chondroitin sulfate (CS) chain of the proteoglycan bikunin. The inter-α-trypsin inhibitor complex is abundant in plasma and associated with inflammation, kidney diseases, cancer and diabetes. Bikunin is modified at Ser-10 by a single low-sulfated CS chain of 23-55 monosaccharides with 4-9 sulfate groups. The innermost four monosaccharides (GlcAß3Galß3Galß4Xylß-O-) compose the linkage region, believed to be uniform with a 4-O-sulfation to the outer Gal. The cross-linkage region of the bikunin CS chain is located in the nonsulfated nonreducing end, (GalNAcß4GlcAß3)(n), to which heavy chains (H1-H3) may be bound in GalNAc to Asp ester linkages. In this study we employed a glycoproteomics protocol to enrich and analyze light and heavy chain linkage and cross-linkage region CS glycopeptides derived from the IαI complex of human plasma, urine and cerebrospinal fluid samples. The samples were trypsinized, enriched by strong anion exchange chromatography, partially depolymerized with chondroitinase ABC and analyzed by LC-MS/MS using higher-energy collisional dissociation. The analyses demonstrated that the CS linkage region of bikunin is highly heterogeneous. In addition to sulfation of the Gal residue, Xyl phosphorylation was observed although exclusively in urinary samples. We also identified novel Neu5Ac and Fuc modifications of the linkage region as well as the presence of mono- and disialylated core 1 O-linked glycans on Thr-17. Heavy chains H1 and H2 were identified cross-linked to GalNAc residues one or two GlcA residues apart and H1 was found linked to either the terminal or subterminal GalNAc residues. The fragmentation behavior of CS glycopeptides under variable higher-energy collisional dissociation conditions displays an energy dependence that may be used to obtain complementary structural details. Finally, we show that the analysis of sodium adducts provides confirmatory information about the positions of glycan substituents.


Assuntos
alfa-Globulinas/isolamento & purificação , Sulfatos de Condroitina/química , Proteômica/métodos , alfa-Globulinas/líquido cefalorraquidiano , alfa-Globulinas/química , alfa-Globulinas/urina , Cromatografia Líquida/métodos , Galactose/química , Glicopeptídeos/química , Glicopeptídeos/isolamento & purificação , Humanos , Masculino , Espectrometria de Massas em Tandem/métodos
10.
Mol Cell Proteomics ; 14(1): 41-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326458

RESUMO

Vertebrates produce various chondroitin sulfate proteoglycans (CSPGs) that are important structural components of cartilage and other connective tissues. CSPGs also contribute to the regulation of more specialized processes such as neurogenesis and angiogenesis. Although many aspects of CSPGs have been studied extensively, little is known of where the CS chains are attached on the core proteins and so far, only a limited number of CSPGs have been identified. Obtaining global information on glycan structures and attachment sites would contribute to our understanding of the complex proteoglycan structures and may also assist in assigning CSPG specific functions. In the present work, we have developed a glycoproteomics approach that characterizes CS linkage regions, attachment sites, and identities of core proteins. CSPGs were enriched from human urine and cerebrospinal fluid samples by strong-anion-exchange chromatography, digested with chondroitinase ABC, a specific CS-lyase used to reduce the CS chain lengths and subsequently analyzed by nLC-MS/MS with a novel glycopeptide search algorithm. The protocol enabled the identification of 13 novel CSPGs, in addition to 13 previously established CSPGs, demonstrating that this approach can be routinely used to characterize CSPGs in complex human samples. Surprisingly, five of the identified CSPGs are traditionally defined as prohormones (cholecystokinin, chromogranin A, neuropeptide W, secretogranin-1, and secretogranin-3), typically stored and secreted from granules of endocrine cells. We hypothesized that the CS side chain may influence the assembly and structural organization of secretory granules and applied surface plasmon resonance spectroscopy to show that CS actually promotes the assembly of chromogranin A core proteins in vitro. This activity required mild acidic pH and suggests that the CS-side chains may also influence the self-assembly of chromogranin A in vivo giving a possible explanation to previous observations that chromogranin A has an inherent property to assemble in the acidic milieu of secretory granules.


Assuntos
alfa-Globulinas , Proteoglicanas de Sulfatos de Condroitina , Glicopeptídeos , alfa-Globulinas/líquido cefalorraquidiano , alfa-Globulinas/química , alfa-Globulinas/metabolismo , alfa-Globulinas/urina , Colecistocinina/análise , Proteoglicanas de Sulfatos de Condroitina/líquido cefalorraquidiano , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/urina , Cromogranina A/análise , Cromogranina B/análise , Cromograninas/análise , Glicopeptídeos/líquido cefalorraquidiano , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicopeptídeos/urina , Humanos , Masculino , Neuropeptídeos/análise
11.
Glycobiology ; 22(11): 1413-23, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22781125

RESUMO

Defects in the O-linked glycosylation of the peripheral membrane protein α-dystroglycan (α-DG) are the main cause of several forms of congenital muscular dystrophies and thus the characterization of the glycosylation of α-DG is of great medical importance. A detailed investigation of the glycosylation pattern of the native α-DG protein is essential for the understanding of the biological processes related to human disease in which the protein is involved. To date, several studies have reported novel O-glycans and attachment sites on the mucin-like domain of mammalian α-DG with both similar and contradicting glycosylation patterns, indicating the species-specific O-glycosylation of mammalian α-DG. By applying a standardized purification scheme and subsequent glycoproteomic analysis of native α-DG from rabbit and human skeletal muscle biopsies and from cultured mouse C2C12 myotubes, we show that the O-glycosylation patterns of the mucin-like domain of native α-DG are conserved among mammalians in a region-specific manner.


Assuntos
Acetilgalactosamina/metabolismo , Distroglicanas/metabolismo , Manose/metabolismo , Animais , Distroglicanas/química , Glicosilação , Humanos , Camundongos , Músculo Esquelético/metabolismo , Estrutura Terciária de Proteína , Coelhos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA