Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1158184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063215

RESUMO

Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies.

2.
J Exp Bot ; 74(19): 6104-6118, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36548145

RESUMO

Plant root growth and developmental capacities reside in a few stem cells of the root apical meristem (RAM). Maintenance of these stem cells requires regenerative divisions of the initial stem cell niche (SCN) cells, self-maintenance, and proliferative divisions of the daughter cells. This ensures sufficient cell diversity to guarantee the development of complex root tissues in the plant. Damage in the root during growth involves the formation of a new post-embryonic root, a process known as regeneration. Post-embryonic root development and organogenesis processes include primary root development and SCN maintenance, plant regeneration, and the development of adventitious and lateral roots. These developmental processes require a fine-tuned balance between cell proliferation and maintenance. An important regulator during root development and regeneration is the gasotransmitter nitric oxide (NO). In this review we have sought to compile how NO regulates cell rate proliferation, cell differentiation, and quiescence of SCNs, usually through interaction with phytohormones, or other molecular mechanisms involved in cellular redox homeostasis. NO exerts a role on molecular components of the auxin and cytokinin signaling pathways in primary roots that affects cell proliferation and maintenance of the RAM. During root regeneration, a peak of auxin and cytokinin triggers specific molecular programs. Moreover, NO participates in adventitious root formation through its interaction with players of the brassinosteroid and cytokinin signaling cascade. Lately, NO has been implicated in root regeneration under hypoxia conditions by regulating stem cell specification through phytoglobins.


Assuntos
Proteínas de Arabidopsis , Raízes de Plantas , Raízes de Plantas/metabolismo , Óxido Nítrico/metabolismo , Meristema , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo
3.
Appl Plant Sci ; 8(10): e11396, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33163295

RESUMO

PREMISE: We report a protocol for studying the function of apple (Malus ×domestica) transcription factors based on the glucocorticoid receptor (GR) system, which allows the dexamethasone (DEX)-mediated activation of plant transcription factors to monitor the expression levels of their potential target genes. METHODS AND RESULTS: Apple leaves are transformed with a vector that allows the expression of the studied transcription factor (i.e., FLOWERING LOCUS C [MdFLC]) fused to GR. Calli derived from the transformed leaves are treated with DEX and cycloheximide, a protein synthesis inhibitor. Compared with other methods, combining the GR system with cycloheximide treatments enables the differentiation between direct and indirect transcription factor target genes. Finally, the expression levels of putative MdFLC target genes are quantified using quantitative reverse transcription PCR. CONCLUSIONS: We demonstrate the efficiency of our GR system to study the function of apple transcription factors. This method is accessible to any laboratory familiar with basic molecular cloning procedures and the apple leaf-mediated agro-transformation technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA