Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069190

RESUMO

Epilepsy is a neurological disorder characterized by abnormal neuronal excitability, with glutamate playing a key role as the predominant excitatory neurotransmitter involved in seizures. Animal models of epilepsy are crucial in advancing epilepsy research by faithfully replicating the diverse symptoms of this disorder. In particular, the GASH/Sal (genetically audiogenic seizure-prone hamster from Salamanca) model exhibits seizures resembling human generalized tonic-clonic convulsions. A single nucleotide polymorphism (SNP; C9586732T, p.His289Tyr) in the Grik1 gene (which encodes the kainate receptor GluK1) has been previously identified in this strain. The H289Y mutation affects the amino-terminal domain of GluK1, which is related to the subunit assembly and trafficking. We used confocal microscopy in Xenopus oocytes to investigate how the H289Y mutation, compared to the wild type (WT), affects the expression and cell-surface trafficking of GluK1 receptors. Additionally, we employed the two-electrode voltage-clamp technique to examine the functional effects of the H289Y mutation. Our results indicate that this mutation increases the expression and incorporation of GluK1 receptors into an oocyte's membrane, enhancing kainate-evoked currents, without affecting their functional properties. Although further research is needed to fully understand the molecular mechanisms responsible for this epilepsy, the H289Y mutation in GluK1 may be part of the molecular basis underlying the seizure-prone circuitry in the GASH/Sal model.


Assuntos
Epilepsia Reflexa , Cricetinae , Animais , Humanos , Xenopus laevis/metabolismo , Epilepsia Reflexa/genética , Convulsões/metabolismo , Receptores de Ácido Caínico/metabolismo , Oócitos/metabolismo
2.
Front Neuroanat ; 17: 1242245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621862

RESUMO

Introduction: In the mammalian auditory pathway, the nuclei of the lateral lemniscus (NLL) are thought to be exclusively involved in the bottom-up transmission of auditory information. However, our repeated observation of numerous NLL neurons labeled after injection of retrograde tracers into the superior olivary complex (SOC) led us to systematically investigate with retrograde tracers the descending projections from the NLL to the SOC of the rat. Methods: We performed large injections of FluoroGold into the SOC to determine NLL contributions to descending projections, and focal injections of biotinylated dextran amine (BDA) to pinpoint the specific nuclei of the SOC innervated by each NLL. Results: The SOC is innervated by thousands of neurons distributed across four nuclei or regions associated with the lateral lemniscus: the ipsilateral ventral and intermediate nuclei of the lateral lemniscus (VNLL and INLL); the medial paralemniscal region (PL) of both sides; and the ipsilateral semilunar nucleus (SLN), a previously unrecognized nucleus that wraps around the INLL dorsally, medially, and caudally and consists of small, flat neurons. In some experiments, at least 30% of neurons in the VNLL and INLL were retrogradely labeled. All nuclei of the SOC, except the medial and lateral superior olives, are innervated by abundant lemniscal neurons, and each SOC nucleus receives a unique combination of lemniscal inputs. The primary target of the projections from the VNLL is the ventral nucleus of the trapezoid body (VNTB), followed by the superior paraolivary nucleus (SPON), and the medial nucleus of the trapezoid body (MNTB). The INLL selectively innervates the VNTB. The PL innervates dorsal periolivary regions bilaterally. The SLN preferentially innervates the MNTB and may provide the first identified non-calyceal excitatory input to MNTB neurons. Discussion: Our novel findings have strong implications for understanding acoustic information processing in the initial stages of the auditory pathway. Based on the proportion of lemniscal neurons involved in all the projections described, the NLL should be considered major players in the descending auditory pathway.

3.
Diagnostics (Basel) ; 13(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980356

RESUMO

The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca) is a model of audiogenic seizures with the epileptogenic focus localized in the inferior colliculus (IC). The sound-induced seizures exhibit a short latency (7-9 s), which implies innate protein disturbances in the IC as a basis for seizure susceptibility and generation. Here, we aim to study the protein profile in the GASH/Sal IC in comparison to controls. Protein samples from the IC were processed for enzymatic digestion and then analyzed by mass spectrometry in Data-Independent Acquisition mode. After identifying the proteins using the UniProt database, we selected those with differential expression and performed ontological analyses, as well as gene-protein interaction studies using bioinformatics tools. We identified 5254 proteins; among them, 184 were differentially expressed proteins (DEPs), with 126 upregulated and 58 downregulated proteins, and 10 of the DEPs directly related to epilepsy. Moreover, 12 and 7 proteins were uniquely found in the GASH/Sal or the control. The results indicated a protein profile alteration in the epileptogenic nucleus that might underlie the inborn occurring audiogenic seizures in the GASH/Sal model. In summary, this study supports the use of bioinformatics methods in proteomics to delve into the relationship between molecular-level protein mechanisms and the pathobiology of rodent models of audiogenic seizures.

4.
Front Mol Neurosci ; 16: 1322750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249292

RESUMO

Genetic abnormalities affecting glutamate receptors are central to excitatory overload-driven neuronal mechanisms that culminate in seizures, making them pivotal targets in epilepsy research. Increasingly used to advance this field, the genetically audiogenic seizure hamster from Salamanca (GASH/Sal) exhibits generalized seizures triggered by high-intensity acoustic stimulation and harbors significant genetic variants recently identified through whole-exome sequencing. Here, we addressed the influence of the missense single-nucleotide polymorphism (C9586732T, p.His289Tyr) in the glutamate receptor ionotropic kainate-1 (Grik1) gene and its implications for the GASH/Sal seizure susceptibility. Using a protein 3D structure prediction, we showed a potential effect of this sequence variation, located in the amino-terminal domain, on the stability and/or conformation of the kainate receptor subunit-1 protein (GluK1). We further employed a multi-technique approach, encompassing gene expression analysis (RT-qPCR), Western blotting, and immunohistochemistry in bright-field and confocal fluorescence microscopy, to investigate critical seizure-associated brain regions in GASH/Sal animals under seizure-free conditions compared to matched wild-type controls. We detected disruptions in the transcriptional profile of the Grik1 gene within the audiogenic seizure-associated neuronal network. Alterations in GluK1 protein levels were also observed in various brain structures, accompanied by an unexpected lower molecular weight band in the inferior and superior colliculi. This correlated with substantial disparities in GluK1-immunolabeling distribution across multiple brain regions, including the cerebellum, hippocampus, subdivisions of the inferior and superior colliculi, and the prefrontal cortex. Notably, the diffuse immunolabeling accumulated within perikarya, axonal fibers and terminals, exhibiting a prominent concentration in proximity to the cell nucleus. This suggests potential disturbances in the GluK1-trafficking mechanism, which could subsequently affect glutamate synaptic transmission. Overall, our study sheds light on the genetic underpinnings of seizures and underscores the importance of investigating the molecular mechanisms behind synaptic dysfunction in epileptic neural networks, laying a crucial foundation for future research and therapeutic strategies targeting GluK1-containing kainate receptors.

6.
Front Behav Neurosci ; 15: 613798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841106

RESUMO

The endocannabinoid system modulates epileptic seizures by regulating neuronal excitability. It has become clear that agonist activation of central type I cannabinoid receptors (CB1R) reduces epileptogenesis in pre-clinical animal models of epilepsy. The audiogenic seizure-prone hamster GASH/Sal is a reliable experimental model of generalized tonic-clonic seizures in response to intense sound stimulation. However, no studies hitherto had investigated CB1R in the GASH/Sal. Although the distribution of CB1R has been extensively studied in mammalian brains, their distribution in the Syrian golden hamster brain also remains unknown. The objective of this research is to determine by immunohistochemistry the differential distribution of CB1R in the brains of GASH/Sal animals under seizure-free conditions, by comparing the results with wild-type Syrian hamsters as controls. CB1R in the GASH/Sal showed a wide distribution in many nuclei of the central nervous system. These patterns of CB1R-immunolabeling are practically identical between the GASH/Sal model and control animals, varying in the intensity of immunostaining in certain regions, being slightly weaker in the GASH/Sal than in the control, mainly in brain regions associated with epileptic networks. The RT-qPCR analysis confirms these results. In summary, our study provides an anatomical basis for further investigating CB1R in acute and kindling audiogenic seizure protocols in the GASH/Sal model as well as exploring CB1R activation via exogenously administered cannabinoid compounds.

7.
Epilepsy Behav ; 121(Pt B): 106594, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31685382

RESUMO

Epilepsy is a chronic neurological disorder characterized by abnormal neuronal activity that arises from imbalances between excitatory and inhibitory synapses, which are highly correlated to functional and structural changes in specific brain regions. The difference between the normal and the epileptic brain may harbor genetic alterations, gene expression changes, and/or protein alterations in the epileptogenic nucleus. It is becoming increasingly clear that such differences contribute to the development of distinct epilepsy phenotypes. The current major challenges in epilepsy research include understanding the disease progression and clarifying epilepsy classifications by searching for novel molecular biomarkers. Thus, the application of molecular techniques to carry out comprehensive studies at deoxyribonucleic acid, messenger ribonucleic acid, and protein levels is of utmost importance to elucidate molecular dysregulations in the epileptic brain. The present review focused on the great diversity of technical approaches available and new research methodology, which are already being used to study molecular alterations underlying epilepsy. We have grouped the different techniques according to each step in the flow of information from DNA to RNA to proteins, and illustrated with specific examples in animal models of epilepsy, some of which are our own. Separately and collectively, the genomic and proteomic techniques, each with its own strengths and limitations, provide valuable information on molecular mechanisms underlying seizure susceptibility and regulation of neuronal excitability. Determining the molecular differences between genetic rodent models of epilepsy and their wild-type counterparts might be a key in determining mechanisms of seizure susceptibility and epileptogenesis as well as the discovery and development of novel antiepileptic agents. This article is part of the Special Issue "NEWroscience 2018".


Assuntos
Epilepsia , Roedores , Animais , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Proteômica , Convulsões/tratamento farmacológico
8.
Brain Sci ; 10(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947873

RESUMO

When a low-salience stimulus of any type of sensory modality-auditory, visual, tactile-immediately precedes an unexpected startle-like stimulus, such as the acoustic startle reflex, the startle motor reaction becomes less pronounced or is even abolished. This phenomenon is known as prepulse inhibition (PPI), and it provides a quantitative measure of central processing by filtering out irrelevant stimuli. As PPI implies plasticity of a reflex and is related to automatic or attentional processes, depending on the interstimulus intervals, this behavioral paradigm might be considered a potential marker of short- and long-term plasticity. Assessment of PPI is directly related to the examination of neural sensorimotor gating mechanisms, which are plastic-adaptive operations for preventing overstimulation and helping the brain to focus on a specific stimulus among other distracters. Despite their obvious importance in normal brain activity, little is known about the intimate physiology, circuitry, and neurochemistry of sensorimotor gating mechanisms. In this work, we extensively review the current literature focusing on studies that used state-of-the-art techniques to interrogate the neuroanatomy, connectomics, neurotransmitter-receptor functions, and sex-derived differences in the PPI process, and how we can harness it as biological marker in neurological and psychiatric pathology.

9.
Front Neurosci ; 14: 508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528245

RESUMO

The Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal), an animal model of reflex epilepsy, exhibits generalized tonic-clonic seizures in response to loud sound with the epileptogenic focus localized in the inferior colliculus (IC). Ictal events in seizure-prone strains cause gene deregulation in the epileptogenic focus, which can provide insights into the epileptogenic mechanisms. Thus, the present study aimed to determine the expression profile of key genes in the IC of the GASH/Sal after the status epilepticus. For such purpose, we used RNA-Seq to perform a comparative study between the IC transcriptome of GASH/Sal and that of control hamsters both subjected to loud sound stimulation. After filtering for normalization and gene selection, a total of 36 genes were declared differentially expressed from the RNA-seq analysis in the IC. A set of differentially expressed genes were validated by RT-qPCR showing significant differentially expression between GASH/Sal hamsters and Syrian control hamsters. The confirmed differentially expressed genes were classified on ontological categories associated with epileptogenic events similar to those produced by generalized tonic seizures in humans. Subsequently, based on the result of metabolomics, we found the interleukin-4 and 13-signaling, and nucleoside transport as presumably altered routes in the GASH/Sal model. This research suggests that seizures in GASH/Sal hamsters are generated by multiple molecular substrates, which activate biological processes, molecular processes, cellular components and metabolic pathways associated with epileptogenic events similar to those produced by tonic seizures in humans. Therefore, our study supports the use of the GASH/Sal as a valuable animal model for epilepsy research, toward establishing correlations with human epilepsy and searching new biomarkers of epileptogenesis.

10.
Hear Res ; 392: 107973, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32402894

RESUMO

Rodent models of audiogenic seizures, in which seizures are precipitated by an abnormal response of the brain to auditory stimuli, are crucial to investigate the neural bases underlying ictogenesis. Despite significant advances in understanding seizure generation in the inferior colliculus, namely the epileptogenic nucleus, little is known about the contribution of lower auditory stations to the seizure-prone network. Here, we examined the cochlea and cochlear nucleus of the genetic audiogenic seizure hamster from Salamanca (GASH/Sal), a model of reflex epilepsy that exhibits generalized tonic-clonic seizures in response to loud sound. GASH/Sal animals under seizure-free conditions were compared with matched control hamsters in a multi-technical approach that includes auditory brainstem responses (ABR) testing, histology, scanning electron microscopy analysis, immunohistochemistry, quantitative morphometry and gene expression analysis (RT-qPCR). The cochlear histopathology of the GASH/Sal showed preservation of the sensory hair cells, but a significant loss of spiral ganglion neurons and mild atrophy of the stria vascularis. At the electron microscopy level, the reticular lamina exhibited disarray of stereociliary tufts with blebs, loss or elongated stereocilia as well as non-parallel rows of outer hair cells due to protrusions of Deiters' cells. At the molecular level, the abnormal gene expression patterns of prestin, cadherin 23, protocadherin 15, vesicular glutamate transporters 1 (Vglut1) and -2 (Vglut2) indicated that the hair-cell mechanotransduction and cochlear amplification were markedly altered. These were manifestations of a cochlear neuropathy that correlated to ABR waveform I alterations and elevated auditory thresholds. In the cochlear nucleus, the distribution of VGLUT2-immunolabeled puncta was differently affected in each subdivision, showing significant increases in magnocellular regions of the ventral cochlear nucleus and drastic reductions in the granule cell domain. This modified inputs lead to disruption of Vglut1 and Vglut2 gene expression in the cochlear nucleus. In sum, our study provides insight into the morphological and molecular traits associated with audiogenic seizure susceptibility in the GASH/Sal, suggesting an upward spread of abnormal glutamatergic transmission throughout the primary acoustic pathway to the epileptogenic region.


Assuntos
Limiar Auditivo , Comportamento Animal , Cóclea/fisiopatologia , Epilepsia Reflexa/fisiopatologia , Epilepsia Tônico-Clônica/fisiopatologia , Audição , Animais , Cóclea/metabolismo , Cóclea/ultraestrutura , Cricetinae , Modelos Animais de Doenças , Epilepsia Reflexa/genética , Epilepsia Reflexa/metabolismo , Epilepsia Reflexa/psicologia , Epilepsia Tônico-Clônica/genética , Epilepsia Tônico-Clônica/metabolismo , Epilepsia Tônico-Clônica/psicologia , Ácido Glutâmico/metabolismo , Masculino , Ruído , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
11.
PLoS One ; 15(4): e0231603, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32243467

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0229953.].

12.
Front Neurol ; 11: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117006

RESUMO

The Wistar Audiogenic Rat (WAR) and the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) strains are audiogenic epilepsy models, in which seizures are triggered by acoustic stimulation. These strains were developed by selective reproduction and have a genetic background with minimal or no variation. In the current study, we evaluated the transcriptome of the inferior colliculus, the epileptogenic nucleus, of both audiogenic models, in order to get insights into common molecular aspects associated to their epileptic phenotype. Based on GASH/Sal RNA-Seq and WAR microarray data, we performed a comparative analysis that includes selection and functional annotation of differentially regulated genes in each model, transcriptional evaluation by quantitative reverse transcription PCR of common genes identified in both transcriptomes and immunohistochemistry. The microarray data revealed 71 genes with differential expression in WAR, and the RNA-Seq data revealed 64 genes in GASH/Sal, showing common genes in both models. Analysis of transcripts showed that Egr3 was overexpressed in WAR and GASH/Sal after audiogenic seizures. The Npy, Rgs2, Ttr, and Abcb1a genes presented the same transcriptional profile in the WAR, being overexpressed in the naïve and stimulated WAR in relation to their controls. Npy appeared overexpressed only in the naïve GASH/Sal compared to its control, while Rgs2 and Ttr genes appeared overexpressed in naïve GASH/Sal and overexpressed after audiogenic seizure. No statistical difference was observed in the expression of Abcb1a in the GASH/Sal model. Compared to control animals, the immunohistochemical analysis of the inferior colliculus showed an increased immunoreactivity for NPY, RGS2, and TTR in both audiogenic models. Our data suggest that WAR and GASH/Sal strains have a difference in the timing of gene expression after seizure, in which GASH/Sal seems to respond more quickly. The transcriptional profile of the Npy, Rgs2, and Ttr genes under free-seizure conditions in both audiogenic models indicates an intrinsic expression already established in the strains. Our findings suggest that these genes may be causing small changes in different biological processes involved in seizure occurrence and response, and indirectly contributing to the susceptibility of the WAR and GASH/Sal models to audiogenic seizures.

13.
PLoS One ; 15(3): e0229953, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32168507

RESUMO

Epilepsy is a complex neurological disorder characterized by sudden and recurrent seizures, which are caused by various factors, including genetic abnormalities. Several animal models of epilepsy mimic the different symptoms of this disorder. In particular, the genetic audiogenic seizure hamster from Salamanca (GASH/Sal) animals exhibit sound-induced seizures similar to the generalized tonic seizures observed in epileptic patients. However, the genetic alterations underlying the audiogenic seizure susceptibility of the GASH/Sal model remain unknown. In addition, gene variations in the GASH/Sal might have a close resemblance with those described in humans with epilepsy, which is a prerequisite for any new preclinical studies that target genetic abnormalities. Here, we performed whole exome sequencing (WES) in GASH/Sal animals and their corresponding controls to identify and characterize the mutational landscape of the GASH/Sal strain. After filtering the results, moderate- and high-impact variants were validated by Sanger sequencing, assessing the possible impact of the mutations by "in silico" reconstruction of the encoded proteins and analyzing their corresponding biological pathways. Lastly, we quantified gene expression levels by RT-qPCR. In the GASH/Sal model, WES showed the presence of 342 variations, in which 21 were classified as high-impact mutations. After a full bioinformatics analysis to highlight the high quality and reliable variants, the presence of 3 high-impact and 15 moderate-impact variants were identified. Gene expression analysis of the high-impact variants of Asb14 (ankyrin repeat and SOCS Box Containing 14), Msh3 (MutS Homolog 3) and Arhgef38 (Rho Guanine Nucleotide Exchange Factor 38) genes showed a higher expression in the GASH/Sal than in control hamsters. In silico analysis of the functional consequences indicated that those mutations in the three encoded proteins would have severe functional alterations. By functional analysis of the variants, we detected 44 significantly enriched pathways, including the glutamatergic synapse pathway. The data show three high-impact mutations with a major impact on the function of the proteins encoded by these genes, although no mutation in these three genes has been associated with some type of epilepsy until now. Furthermore, GASH/Sal animals also showed gene variants associated with different types of epilepsy that has been extensively documented, as well as mutations in other genes that encode proteins with functions related to neuronal excitability, which could be implied in the phenotype of the GASH/Sal. Our findings provide valuable genetic and biological pathway data associated to the genetic burden of the audiogenic seizure susceptibility and reinforce the need to validate the role of each key mutation in the phenotype of the GASH/Sal model.


Assuntos
Biologia Computacional , Epilepsia Reflexa/epidemiologia , Epilepsia/epidemiologia , Convulsões/epidemiologia , Estimulação Acústica , Animais , Cricetinae , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/patologia , Epilepsia Reflexa/tratamento farmacológico , Epilepsia Reflexa/genética , Epilepsia Reflexa/patologia , Feminino , Regulação da Expressão Gênica/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Masculino , Proteína 3 Homóloga a MutS/genética , Mutação/genética , Convulsões/tratamento farmacológico , Convulsões/genética , Convulsões/patologia , Sequenciamento do Exoma
14.
Front Behav Neurosci ; 14: 612624, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551767

RESUMO

Despite evidence that supports cannabidiol (CBD) as an anticonvulsant agent, there remains controversy over the antiseizure efficacy, possible adverse effects, and synergistic interactions with classic antiepileptics such as valproate (VPA). The genetic audiogenic seizure hamster from the University of Salamanca (GASH/Sal) is a reliable experimental model of generalized tonic-clonic seizures in response to intense sound stimulation. The present study examines the behavioral and molecular effects of acute and chronic intraperitoneal administrations of VPA (300 mg/kg) and CBD (100 mg/kg) on the GASH/Sal audiogenic seizures, as well as the coadministration of both drugs. The GASH/Sal animals were examined prior to and after the corresponding treatment at 45 min, 7 days, and 14 days for seizure severity and neuroethology, open-field behaviors, body weight variations, and various hematological and biochemical parameters. Furthermore, the brain tissue containing the inferior colliculus (so-called epileptogenic nucleus) was processed for reverse transcription-quantitative polymerase chain reaction analysis to determine the treatment effects on the gene expression of neuronal receptors associated with drug actions and ictogenesis. Our results indicated that single dose of VPA helps prevent the animals from getting convulsions, showing complete elimination of seizures, whereas 7 days of chronic VPA treatment had few effects in seizure behaviors. Acute CBD administration showed subtle attenuation of seizure behaviors, increasing seizure latency and decreasing the duration of the convulsion phase, but without entirely seizure abolition. Chronic CBD treatments had no significant effects on sound-induced seizures, although some animals slightly improved seizure severity. Acute and chronic CBD treatments have no significant adverse effects on body weight, hematological parameters, and liver function, although locomotor activity was reduced. The combination of VPA and CBD did not alter the therapeutic outcome of the VPA monotherapy, showing no apparent synergistic effects. As compared to sham animals, chronic treatments with CBD caused abnormal mRNA expression levels for Trpv1, Adora1, Slc29a1, and Cnr1 genes, whereas no differences in gene expression were found for Htr1a and Sigmar1. Our study shed light on the behavioral and molecular effects of CBD and VPA on the GASH/Sal model and constituted the basis to develop further studies on the pharmacological effects of CBD and its interactions with other anticonvulsants.

15.
Curr Alzheimer Res ; 15(2): 149-156, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28847285

RESUMO

BACKGROUND: Sensorimotor integration mechanisms can be affected by many factors, among which are those involving neuromuscular disorders. Parkinson's disease (PD) is characterized by well-known motor symptoms, among which lately have been included motor speech deficits. Measurement of the acoustic startle reflex (ASR) and its modulations (prepulse inhibition and prepulse facilitation, PPI and PPF respectively) represent a simple and quantifiable tool to assess sensorimotor function. However, it remains unknown whether measures of the PPI and PPF are associated with motor speech deficits in PD. METHODS: A total of 88 subjects participated in this study, 52 diagnosed with PD and 36 control subjects. After obtaining written informed consent, participants were assessed with PPI at several interstimulus intervals, and PPF at 1000 ms using the SRH-Lab system (San Diego, CA). Percentage of change in the amplitude and latency of the ASR was analyzed between groups. Voice recordings were register of a specific text given to the subjects with a professional recorder and temporal patterns of speech were analyzed. RESULTS: Statistical analysis conducted in this study showed differences in PPI and PPF in subjects with PD compared to controls. In addition, discriminative parameters of voice abnormalities were observed in PD subjects related to control subjects showing a reduction in phonation time, vowel pulses, breaks, breakage and voice speech periods. CONCLUSIONS: PD presents a disruption in sensorimotor filter mechanisms and speech disorders, and there is a relationship between these alterations. The correlation between the PPI and PPF with an alteration of the voice in PD subjects contributes toward understanding mechanism underlying the neurophysiological alterations in both processes. Overall, easy and non-invasive tests such as PPI, PPF together with voice analysis may be useful to identify early stages of PD.


Assuntos
Doença de Parkinson/fisiopatologia , Filtro Sensorial , Distúrbios da Fala/fisiopatologia , Idoso , Feminino , Humanos , Masculino , Filtro Sensorial/fisiologia , Fala/fisiologia , Medida da Produção da Fala , Voz/fisiologia
16.
Brain Struct Funct ; 222(8): 3491-3508, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28382577

RESUMO

The noradrenergic locus coeruleus (LC) plays an important role in the promotion and maintenance of arousal and alertness. Our group recently described coerulean projections to cochlear root neurons (CRNs), the first relay of the primary acoustic startle reflex (ASR) circuit. However, the role of the LC in the ASR and its modulation, prepulse inhibition (PPI), is not clear. In this study, we damaged LC neurons and fibers using a highly selective neurotoxin, DSP-4, and then assessed ASR and PPI in male and female rats. Our results showed that ASR amplitude was higher in males at 14 days after DSP-4 injection when compared to pre-administration values and those in the male control group. Such modifications in ASR amplitude did not occur in DSP-4-injected females, which exhibited ASR amplitude within the range of control values. PPI differences between males and females seen in controls were not observed in DSP-4-injected rats for any interstimulus interval tested. DSP-4 injection did not affect ASR and PPI latencies in either the male or the female groups, showing values that were consistent with the sex-related variability observed in control rats. Furthermore, we studied the noradrenergic receptor system in the cochlear nerve root using gene expression analysis. When compared to controls, DSP-4-injected males showed higher levels of expression in all adrenoceptor subtypes; however, DSP-4-injected females showed varied effects depending on the receptor type, with either up-, downregulations, or maintenance of expression levels. Lastly, we determined noradrenaline levels in CRNs and other LC-targeted areas using HPLC assays, and these results correlated with behavioral and adrenoceptor expression changes post DSP-4 injection. Our study supports the participation of LC in ASR and PPI, and contributes toward a better understanding of sex-related differences observed in somatosensory gating paradigms.


Assuntos
Núcleo Coclear/fisiologia , Locus Cerúleo/fisiologia , Neurônios/fisiologia , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto , Caracteres Sexuais , Estimulação Acústica , Animais , Núcleo Coclear/citologia , Núcleo Coclear/metabolismo , Dopamina beta-Hidroxilase/metabolismo , Feminino , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Masculino , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Norepinefrina/metabolismo , Ratos Wistar , Receptores Adrenérgicos/metabolismo
17.
Epilepsy Behav ; 71(Pt B): 193-206, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27492627

RESUMO

The genetic audiogenic seizure hamster (GASH:Sal) is a model of a form of reflex epilepsy that is manifested as generalized tonic-clonic seizures induced by external acoustic stimulation. The morphofunctional alterations in the auditory system of the GASH:Sal that may contribute to seizure susceptibility have not been thoroughly determined. In this study, we analyzed the olivocochlear efferent system of the GASH:Sal from the organ of Corti, including outer and inner hair cells, to the olivocochlear neurons, including shell, lateral, and medial olivocochlear (LOC and MOC) neurons that innervate the cochlear receptor. To achieve this, we carried out a multi-technical approach that combined auditory hearing screenings, scanning electron microscopy, morphometric analysis of labeled LOC and MOC neurons after unilateral Fluoro-Gold injections into the cochlea, and 3D reconstruction of the lateral superior olive (LSO). Our results showed that the GASH:Sal exhibited higher auditory brain response (ABR) thresholds than their controls, as well as absence of distortion-product of otoacoustic emissions (DPOAEs) in a wide range of frequencies. The ABR and DPOAE results also showed differences between the left and right ears, indicating asymmetrical hearing alterations in the GASH:Sal. These alterations in the peripheral auditory activity correlated with morphological alterations. At the cochlear level, the scanning electron microscopy analysis showed marked distortions of the stereocilia from basal to apical cochlear turns in the GASH:Sal, which were not observed in the control hamsters. At the brainstem level, MOC, LOC, and shell neurons had reduced soma areas compared with control animals. This LOC neuron shrinkage contributed to reduction in the LSO volume of the GASH:Sal as shown in the 3D reconstruction analysis. Our study demonstrated that the morphofunctional alterations of the olivocochlear efferent system are innate components of the GASH:Sal, which might contribute to their susceptibility to audiogenic seizures. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Assuntos
Estimulação Acústica/efeitos adversos , Cóclea/patologia , Modelos Animais de Doenças , Epilepsia Reflexa/patologia , Núcleo Olivar/patologia , Convulsões/patologia , Animais , Limiar Auditivo/fisiologia , Tronco Encefálico/patologia , Tronco Encefálico/ultraestrutura , Cóclea/ultraestrutura , Cricetinae , Epilepsia Reflexa/genética , Mesocricetus , Núcleo Olivar/ultraestrutura , Emissões Otoacústicas Espontâneas/genética , Convulsões/genética
18.
Brain Struct Funct ; 220(3): 1477-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24623157

RESUMO

The cochlear root neurons (CRNs) are key components of the primary acoustic startle circuit; mediating auditory alert and escape behaviors in rats. They receive a great variety of inputs which serve to elicit and modulate the acoustic startle reflex (ASR). Recently, our group has suggested that CRNs receive inputs from the locus coeruleus (LC), a noradrenergic nucleus which participates in attention and alertness. Here, we map the efferent projection patterns of LC neurons and confirm the existence of the LC-CRN projection using both anterograde and retrograde tract tracers. Our results show that each LC projects to the CRNs of both sides with a clear ipsilateral predominance. The LC axons terminate as small endings distributed preferentially on the cell body and primary dendrites of CRNs. Using light and confocal microscopy, we show a strong immunoreactivity for tyrosine hydroxylase and dopamine ß-hydroxylase in these terminals, indicating noradrenaline release. We further studied the noradrenergic system using gene expression analysis (RT-qPCR) and immunohistochemistry to detect specific noradrenergic receptor subunits in the cochlear nerve root. Our results indicate that CRNs contain a noradrenergic receptor profile sufficient to modulate the ASR, and also show important gender-specific differences in their gene expression. 3D reconstruction analysis confirms the presence of sexual dimorphism in the density and distribution of LC neurons. Our study describes a coerulean noradrenergic projection to the CRNs that might contribute to neural processes underlying sensory gating of the ASR, and also provides an explanation for the gender differences observed in the behavioral paradigm.


Assuntos
Vias Auditivas/ultraestrutura , Núcleo Coclear/fisiologia , Neurônios/fisiologia , Fibras Adrenérgicas/fisiologia , Animais , Catecolaminas/metabolismo , Núcleo Coclear/citologia , Dendritos/fisiologia , Feminino , Expressão Gênica , Locus Cerúleo/fisiologia , Masculino , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptores Adrenérgicos/metabolismo , Fatores Sexuais
19.
Front Neurosci ; 8: 216, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25120419

RESUMO

The acoustic startle reflex (ASR) is a survival mechanism of alarm, which rapidly alerts the organism to a sudden loud auditory stimulus. In rats, the primary ASR circuit encompasses three serially connected structures: cochlear root neurons (CRNs), neurons in the caudal pontine reticular nucleus (PnC), and motoneurons in the medulla and spinal cord. It is well-established that both CRNs and PnC neurons receive short-latency auditory inputs to mediate the ASR. Here, we investigated the anatomical origin and functional role of these inputs using a multidisciplinary approach that combines morphological, electrophysiological and behavioral techniques. Anterograde tracer injections into the cochlea suggest that CRNs somata and dendrites receive inputs depending, respectively, on their basal or apical cochlear origin. Confocal colocalization experiments demonstrated that these cochlear inputs are immunopositive for the vesicular glutamate transporter 1 (VGLUT1). Using extracellular recordings in vivo followed by subsequent tracer injections, we investigated the response of PnC neurons after contra-, ipsi-, and bilateral acoustic stimulation and identified the source of their auditory afferents. Our results showed that the binaural firing rate of PnC neurons was higher than the monaural, exhibiting higher spike discharges with contralateral than ipsilateral acoustic stimulations. Our histological analysis confirmed the CRNs as the principal source of short-latency acoustic inputs, and indicated that other areas of the cochlear nucleus complex are not likely to innervate PnC. Behaviorally, we observed a strong reduction of ASR amplitude in monaural earplugged rats that corresponds with the binaural summation process shown in our electrophysiological findings. Our study contributes to understand better the role of neuronal mechanisms in auditory alerting behaviors and provides strong evidence that the CRNs-PnC pathway mediates fast neurotransmission and binaural summation of the ASR.

20.
Brain Struct Funct ; 219(5): 1555-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23733175

RESUMO

Cochlear root neurons (CRNs) are the first brainstem neurons which initiate and participate in the full expression of the acoustic startle reflex. Although it has been suggested that a cholinergic pathway from the ventral nucleus of the trapezoid body (VNTB) conveys auditory prepulses to the CRNs, the neuronal origin of the VNTB-CRNs projection and the role it may play in the cochlear root nucleus remain uncertain. To determine the VNTB neuronal type which projects to CRNs, we performed tract-tracing experiments combined with mechanical lesions, and morphometric analyses. Our results indicate that a subpopulation of non-olivocochlear neurons projects directly and bilaterally to CRNs via the trapezoid body. We also performed a gene expression analysis of muscarinic and nicotinic receptors which indicates that CRNs contain a cholinergic receptor profile sufficient to mediate the modulation of CRN responses. Consequently, we investigated the effects of auditory prepulses on the neuronal activity of CRNs using extracellular recordings in vivo. Our results show that CRN responses are strongly inhibited by auditory prepulses. Unlike other neurons of the cochlear nucleus, the CRNs exhibited inhibition that depended on parameters of the auditory prepulse such as intensity and interstimulus interval, showing their strongest inhibition at short interstimulus intervals. In sum, our study supports the idea that CRNs are involved in the auditory prepulse inhibition of the acoustic startle reflex, and confirms the existence of multiple cholinergic pathways that modulate the primary acoustic startle circuit.


Assuntos
Vias Auditivas/fisiologia , Colinérgicos/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Núcleo Coclear/citologia , Reflexo de Sobressalto/efeitos dos fármacos , Corpo Trapezoide/citologia , Estimulação Acústica , Potenciais de Ação/efeitos dos fármacos , Animais , Vias Auditivas/citologia , Biotina/análogos & derivados , Biotina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Neurônios Colinérgicos/fisiologia , Dextranos/metabolismo , Feminino , Lateralidade Funcional , Expressão Gênica/efeitos dos fármacos , Colículos Inferiores/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Reflexo de Sobressalto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA