Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107344

RESUMO

The microbiota-gut-brain axis is a complex interconnected system altered in schizophrenia. The antioxidant N-acetylcysteine (NAC) has been proposed as an adjunctive therapy to antipsychotics in clinical trials, but its role in the microbiota-gut-brain axis has not been sufficiently explored. We aimed to describe the effect of NAC administration during pregnancy on the gut-brain axis in the offspring from the maternal immune stimulation (MIS) animal model of schizophrenia. Pregnant Wistar rats were treated with PolyI:C/Saline. Six groups of animals were studied according to the study factors: phenotype (Saline, MIS) and treatment (no NAC, NAC 7 days, NAC 21 days). Offspring were subjected to the novel object recognition test and were scanned using MRI. Caecum contents were used for metagenomics 16S rRNA sequencing. NAC treatment prevented hippocampal volume reduction and long-term memory deficits in MIS-offspring. In addition, MIS-animals showed lower bacterial richness, which was prevented by NAC. Moreover, NAC7/NAC21 treatments resulted in a reduction of proinflammatory taxons in MIS-animals and an increase in taxa known to produce anti-inflammatory metabolites. Early approaches, like this one, with anti-inflammatory/anti-oxidative compounds, especially in neurodevelopmental disorders with an inflammatory/oxidative basis, may be useful in modulating bacterial microbiota, hippocampal size, as well as hippocampal-based memory impairments.

2.
Eur Neuropsychopharmacol ; 46: 14-27, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33735708

RESUMO

The likely involvement of inflammation and oxidative stress (IOS) in mental disease has led to advocate anti-oxidant and anti-inflammatory drugs as therapeutic strategies in the treatment of schizophrenia. Since omega-3 fatty acids (ω-3) show anti-inflammatory/neuroprotective properties, we aim to evaluate whether ω-3 treatment during adolescence in the maternal immune stimulation (MIS) animal model of schizophrenia could prevent the brain and behavioural deficits described in adulthood. At gestational day 15, PolyI:C (4 mg/kg) or saline (VH) were injected to pregnant Wistar rats. Male offspring received ω-3 (800 mg/kg) or saline (Sal) daily from postnatal day (PND) 35-49, defining 4 groups: MIS-ω-3; MIS-Sal; VH-ω-3 and VH-Sal. At PND70, rats were submitted to prepulse inhibition test (PPI). FDG-PET and T2-weighted MRI brain studies were performed in adulthood and analyzed by means of SPM12. IOS markers were measured in selected brain areas. MIS-offspring showed a PPI deficit compared with VH-offspring and ω-3 treatment prevented this deficit. Also, ω-3 reduced the brain metabolism in the deep mesencephalic area and prevented the volumetric abnormalities in the hippocampus but not in the ventricles in MIS-offspring. Besides, ω-3 reduced the expression of iNOS and Keap1 and increased the activity/concentration of HO1, NQO1 and GPX. Our study demonstrates that administration of ω-3 during adolescence prevents PPI behavioural deficits and hippocampal volumetric abnormalities, and partially counteracts IOS deficits via iNOS and Nrf2-ARE pathways in the MIS model. This study highlights the need for novel strategies based on anti-inflammatory/anti-oxidant compounds to alter the disease course in high-risk populations at early stages.


Assuntos
Ácidos Graxos Ômega-3 , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Viroses , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch , Masculino , Fator 2 Relacionado a NF-E2/uso terapêutico , Poli I-C , Gravidez , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Ratos , Ratos Wistar , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Esquizofrenia/prevenção & controle , Viroses/tratamento farmacológico
3.
Eur J Neurol ; 28(3): 1056-1081, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33180965

RESUMO

BACKGROUND AND PURPOSE: Minocycline is a broad-spectrum antibiotic, effective as a chronic treatment for recurrent bacterial infections. Beyond its antibiotic action, minocycline also has important anti-inflammatory, antioxidant and antiapoptotic properties. Its efficacy has therefore been evaluated in many neurodegenerative and psychiatric diseases that have an inflammatory basis. Our aim was to review preclinical and clinical studies performed in neurological and psychiatric diseases whose treatment involved the use of minocycline and thereby to discern the possible beneficial effect of minocycline in these disorders. METHODS: Completed and ongoing preclinical studies and clinical trials of minocycline for both neurodegenerative diseases and psychiatric disorders, published from January 1995 to January 2020, were identified through searching relevant databases (https://www.ncbi.nlm.nih.gov/pubmed/, https://clinicaltrials.gov/). A total of 74 preclinical studies and 44 clinical trials and open-label studies were selected. RESULTS: The results of the nearly 20 years of research identified are diverse. While minocycline mostly proved to be effective in animal models, clinical results showed divergent outcomes, with positive results in some studies counterbalanced by a number of cases with no significant improvements. Specific data for each disease are further individually described in this review. CONCLUSIONS: Despite minocycline demonstrating antioxidant and anti-inflammatory effects, discrepancies between preclinical and clinical data indicate that we should be cautious in analyzing the outcomes. Improving and standardizing protocols and refining animal models could help us to determine if minocycline really is a useful drug in the treatment of these pathologies.


Assuntos
Transtornos Mentais , Doenças Neurodegenerativas , Animais , Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Humanos , Transtornos Mentais/tratamento farmacológico , Minociclina/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico
4.
Antioxidants (Basel) ; 9(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353046

RESUMO

Microglia controls the immune system response in the brain. Specifically, the activation and dysregulation of the NLRP3 inflammasome is responsible for the initiation of the inflammatory process through IL-1ß and IL-18 release. In this work, we have focused on studying the effect of melatonin on the regulation of the NLRP3 inflammasome through α7 nicotinic receptor (nAChR) and its relationship with autophagy. For this purpose, we have used pharmacological and genetic approaches in lipopolysaccharide (LPS)-induced inflammation models in both in vitro and in vivo models. In the BV2 cell line, LPS inhibited autophagy, which increased NLRP3 protein levels. However, melatonin promoted an increase in the autophagic flux. Treatment of glial cultures from wild-type (WT) mice with LPS followed by extracellular adenosine triphosphate (ATP) produced the release of IL-1ß, which was reversed by melatonin pretreatment. In cultures from α7 nAChR knock-out (KO) mice, melatonin did not reduce IL-1ß release. Furthermore, melatonin decreased the expression of inflammasome components and reactive oxygen species (ROS) induced by LPS; co-incubation of melatonin with α-bungarotoxin (α-bgt) or luzindole abolished the anti-inflammatory and antioxidant effects. In vivo, melatonin reverted LPS-induced cognitive decline, reduced NLRP3 levels and promoted autophagic flux in the hippocampi of WT mice, whereas in α7 nAChR KO mice melatonin effect was not observed. These results suggest that melatonin may modulate the complex interplay between α7 nAChR and autophagy signaling.

5.
Br J Pharmacol ; 176(15): 2764-2779, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31074003

RESUMO

BACKGROUND AND PURPOSE: Ischaemic stroke is a leading cause of death, disability, and a high unmet medical need. Post-reperfusion inflammation and an up-regulation of toll-like receptor 4 (TLR4), an upstream sensor of innate immunity, are associated with poor outcome in stroke patients. Here, we identified the therapeutic effect of targeting the LPS/TLR4 signal transduction pathway. EXPERIMENTAL APPROACH: We tested the effect of the TLR4 inhibitor, eritoran (E5564) in different in vitro ischaemia-related models: human organotypic cortex culture, rat organotypic hippocampal cultures, and primary mixed glia cultures. We explored the therapeutic window of E5564 in the transient middle cerebral artery occlusion model of cerebral ischaemia in mice. KEY RESULTS: In vivo, administration of E5564 1 and 4 hr post-ischaemia reduced the expression of different pro-inflammatory chemokines and cytokines, infarct volume, blood-brain barrier breakdown, and improved neuromotor function, an important clinically relevant outcome. In the human organotypic cortex culture, E5564 reduced the activation of microglia and ROS production evoked by LPS. CONCLUSION AND IMPLICATIONS: TLR4 signalling has a causal role in the inflammation associated with a poor post-stroke outcome. Importantly, its inhibition by eritoran (E5564) provides neuroprotection both in vitro and in vivo, including in human tissue, suggesting a promising new therapeutic approach for ischaemic stroke.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Lipídeo A/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Lipídeo A/farmacologia , Lipídeo A/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fenótipo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(14): 7129-7136, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894481

RESUMO

Drug discovery faces an efficacy crisis to which ineffective mainly single-target and symptom-based rather than mechanistic approaches have contributed. We here explore a mechanism-based disease definition for network pharmacology. Beginning with a primary causal target, we extend this to a second using guilt-by-association analysis. We then validate our prediction and explore synergy using both cellular in vitro and mouse in vivo models. As a disease model we chose ischemic stroke, one of the highest unmet medical need indications in medicine, and reactive oxygen species forming NADPH oxidase type 4 (Nox4) as a primary causal therapeutic target. For network analysis, we use classical protein-protein interactions but also metabolite-dependent interactions. Based on this protein-metabolite network, we conduct a gene ontology-based semantic similarity ranking to find suitable synergistic cotargets for network pharmacology. We identify the nitric oxide synthase (Nos1 to 3) gene family as the closest target to Nox4 Indeed, when combining a NOS and a NOX inhibitor at subthreshold concentrations, we observe pharmacological synergy as evidenced by reduced cell death, reduced infarct size, stabilized blood-brain barrier, reduced reoxygenation-induced leakage, and preserved neuromotor function, all in a supraadditive manner. Thus, protein-metabolite network analysis, for example guilt by association, can predict and pair synergistic mechanistic disease targets for systems medicine-driven network pharmacology. Such approaches may in the future reduce the risk of failure in single-target and symptom-based drug discovery and therapy.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Descoberta de Drogas , NADPH Oxidase 4/metabolismo , Óxido Nítrico Sintase/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Masculino , Camundongos , NADPH Oxidase 4/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/efeitos dos fármacos , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Pirazóis/farmacologia , Piridonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Acidente Vascular Cerebral/prevenção & controle
7.
Mol Neurobiol ; 53(5): 3030-3045, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25966970

RESUMO

Agmatine, an endogenous neuromodulator, is a potential candidate to constitute an adjuvant/monotherapy for the management of depression. A recent study by our group demonstrated that agmatine induces Nrf2 and protects against corticosterone effects in a hippocampal neuronal cell line. The present study is an extension of this previous study by assessing the antidepressant-like effect of agmatine in an animal model of depression induced by corticosterone in mice. Swiss mice were treated simultaneously with agmatine or imipramine at a dose of 0.1 mg/kg/day (p.o.) and corticosterone for 21 days and the daily administrations of experimental drugs were given immediately prior to corticosterone (20 mg/kg/day, p.o.) administrations. Wild-type C57BL/6 mice (Nrf2 (+/+)) and Nrf2 KO (Nrf2 (-/-)) were treated during 21 days with agmatine (0.1 mg/kg/day, p.o.) or vehicle. Twenty-four hours after the last treatments, the behavioral tests and biochemical assays were performed. Agmatine treatment for 21 days was able to abolish the corticosterone-induced depressive-like behavior and the alterations in the immunocontent of mature BDNF and synaptotagmin I, and in the serotonin and glutamate levels. Agmatine also abolished the corticosterone-induced changes in the morphology of astrocytes and microglia in CA1 region of hippocampus. In addition, agmatine treatment in control mice increased noradrenaline, serotonin, and dopamine levels, CREB phosphorylation, mature BDNF and synaptotagmin I immunocontents, and reduced pro-BDNF immunocontent in the hippocampus. Agmatine's ability to produce an antidepressant-like effect was abolished in Nrf2 (-/-) mice. The present results reinforce the participation of Nrf2 in the antidepressant-like effect produced by agmatine and expand literature data concerning its mechanisms of action.


Assuntos
Agmatina/farmacologia , Comportamento Animal , Depressão/metabolismo , Depressão/fisiopatologia , Fator 2 Relacionado a NF-E2/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Anedonia/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Biomarcadores/metabolismo , Corticosterona , Depressão/tratamento farmacológico , Depressão/patologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Imipramina/farmacologia , Imipramina/uso terapêutico , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Neurotransmissores/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Neuropharmacology ; 99: 187-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26188145

RESUMO

Stopping the ischemic cascade by targeting its components is a potential strategy for acute ischemic stroke treatment. During ischemia and especially over reperfusion, oxidative stress plays a major role in causing neuronal cell death. Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors. In this context, this study was planned to test the potential neuroprotective effects of the novel melatonin MT1/MT2 receptor agonist, Neu-P11, against brain ischemia in in vitro and in vivo models, and to elucidate its underlying mechanism of action. Neu-P11 proved to be a good antioxidant, to protect against glutamate-induced excitotoxicity and oxygen and glucose deprivation in hippocampal slices, and to reduce infarct volume in an in vivo stroke model. Regarding its mechanism of action, the protective effect of Neu-P11 was reverted by luzindole (melatonin receptor antagonist), AG490 (JAK2 inhibitor), LY294002 (PI3/AKT inhibitor) and PD98059 (MEK/ERK1/2 inhibitor). In conclusion, Neu-P11 affords neuroprotection against brain ischemia in in vitro and in vivo models by activating a pro-survival signaling pathway that involves melatonin receptors, JAK/STAT, PI3K/Akt and MEK/ERK1/2.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Indóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Piranos/farmacologia , Animais , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Glucose/deficiência , Humanos , Masculino , Melatonina/análogos & derivados , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de Melatonina/agonistas , Receptores de Melatonina/antagonistas & inibidores , Receptores de Melatonina/metabolismo , Técnicas de Cultura de Tecidos
9.
Psychoneuroendocrinology ; 38(10): 2010-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23623252

RESUMO

A causative relationship between inflammation and depression is gradually gaining consistency. Because Nrf2 participates in inflammation, we hypothesized that Nrf2 could play a role in depressive disorders. In this study, we have observed that Nrf2 deletion in mice results in: (i) a depressive-like behavior evaluated as an increase in the immobility time in the tail-suspension test and by a decrease in the grooming time in the splash test, (ii) reduced levels of dopamine and serotonin and increased levels of glutamate in the prefrontal cortex, (iii) altered levels of proteins associated to depression such as VEGF and synaptophysin and (iv) microgliosis. Furthermore, treatment of Nrf2 knockout mice with the anti-inflammatory drug rofecoxib reversed their depressive-like behavior, while induction of Nrf2 by sulforaphane, in an inflammatory model of depression elicited by LPS, afforded antidepressant-like effects. In conclusion, our results indicate that chronic inflammation due to a deletion of Nrf2 can lead to a depressive-like phenotype while induction of Nrf2 could become a new and interesting target to develop novel antidepressive drugs.


Assuntos
Transtorno Depressivo/genética , Inflamação/genética , Fator 2 Relacionado a NF-E2/fisiologia , Animais , Anti-Inflamatórios/metabolismo , Comportamento Animal/fisiologia , Transtorno Depressivo/sangue , Dopamina/sangue , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética , Serotonina/sangue , Transdução de Sinais/genética
11.
Neuropharmacology ; 67: 403-11, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23228428

RESUMO

ITH33/IQM9.21 is a novel compound belonging to a family of glutamic acid derivatives, synthesized under the hypothesis implying that multitarget ligands may provide more efficient neuroprotection than single-targeted compounds. In rat hippocampal slices, oxygen plus glucose deprivation followed by re-oxygenation (OGD/Reox) elicited 42% cell death. At 1 µM, ITH33/IQM9.21 mitigated this damage by 26% and by 55% at 3 µM. OGD/Reox also elicited mitochondrial depolarization, overproduction of reactive oxygen species (ROS), enhanced expression of nitric oxide synthase (iNOS) and reduction of GSH levels. These changes were almost fully prevented when 3 µM ITH33/IQM9.21 was present during slice treatment with OGD/Reox. In isolated hippocampal neurons, ITH33/IQM9.21 reduced [Ca(2+)](c) transients induced by a high K(+) depolarizing solution or glutamate. In a photothrombotic model of stroke in mice, intraperitoneal injection of ITH33/IQM9.21 at 1.25 mg/kg, 2.5 mg/kg or 5 mg/kg given before and during 2 days after stroke induction, reduced infarct volume by over 45%. Furthermore, when the compound was administered 1 h post-stroke, a similar effect was observed. In conclusion, these in vitro and in vivo results suggest that ITH33/IQM9.21 exhibits neuroprotective effects to protect the vulnerable neurons at the ischemic penumbra by an effective and multifaceted mechanism, mediated by reduction of Ca(2+) overload, providing mitochondrial protection and antioxidant actions.


Assuntos
Isquemia Encefálica/prevenção & controle , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Células Cultivadas , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ligantes , Masculino , Camundongos , Fármacos Neuroprotetores/metabolismo , Técnicas de Cultura de Órgãos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA