Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 772: 145038, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33581523

RESUMO

Agriculture effluents from cleaning and handling equipment used in pesticide applications can contaminate superficial and groundwater sources when not correctly disposed of. Biobeds using soil enriched with amendments represent a viable technology to control and minimize pesticide pollution of soil and water in farmlands. They are usually installed outdoors without protection, making them vulnerable to rain flooding, lack of moisture, drought, and intense heat or cold. Temperature (T) and moisture (M) of the biomixture are considered two of the most important physical factor affecting pesticide dissipation. This study aimed to evaluate the effect of T and M on the dissipation of five of the most used pesticides (carbofuran, atrazine, 2,4-D, diazinon, and glyphosate) in Yucatan State, Mexico. Three experiments using miniaturized biobeds considering optimal temperature and moisture (T of 30 ± 2 °C and 90% water holding capacity [WHC]) were performed. The optimal dissipation time and the effect of T, M variations, and volatilization was determined. The optimal dissipation time was over 14 days. Carbofuran was the least dissipated pesticide and glyphosate the most. The primary factor affecting pesticide dissipation was T (P < 0.05), reaching rates of dissipation of 99% at 45 °C. Variations of M in the biomixture were not significant on pesticide dissipation (P > 0.05). The white-rot fungi were observed; its presence was related to increments of T. Head Space analysis (at 45 °C) showed low pesticide volatilization (≤0.03%) for all pesticide used were quantified; water vapor condensation could reduce the pesticide volatilization for experimental conditions.

2.
Ecotoxicol Environ Saf ; 200: 110734, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464440

RESUMO

Microorganisms' role in pesticide degradation has been studied widely. Insitu treatments of effluents containing pesticides such as biological beds (biobeds) are efficient biological systems where biomixture (mixture of substrates) and microorganisms are the keys in pesticide treatment; however, microbial activity has been studied poorly, and its potential beyond biobeds has not been widely explored. In this study, the capacity of microbial consortium and bacteria-pure strains isolated from a biomixture (soil-straw; 1:1, v/v) used to treat agricultural effluents under real conditions were evaluated during a bioremediation process of five pesticides commonly used Yucatan Mexico. Atrazine, carbofuran, and glyphosate had the highest degradations (>90%) using the microbial consortium; 2,4-D and diazinon were the most persistent (DT50 = 8.64 and 6.63 days). From the 21 identified bacteria species in the microbial consortium, Pseudomonas nitroreducens was the most abundant (52%) according to identified sequences. For the pure strains evaluation 2,4-D (DT50 = 9.87 days), carbofuran (DT50 = 8.27 days), diazinon (DT50 = 8.80 days) and glyphosate (DT50 = 8.59 days) were less persistent in the presence of the mixed consortium (Ochrobactrum sp. DGG-1-3, Ochrobactrum sp. Ge-14, Ochrobactrum sp. B18 and Pseudomonas citronellolis strain ADA-23B). Time, pesticide, and strain type were significant (P < 0.05) in pesticide degradation, so this process is multifactorial. Microbial consortium and pure strains can be used to increase the biobed efficiency by inoculation, even in the remediation of soil contaminated by pesticides in agricultural areas.


Assuntos
Bactérias/metabolismo , Consórcios Microbianos , Praguicidas/metabolismo , Poluentes do Solo/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo , Agricultura , Atrazina/metabolismo , Bactérias/isolamento & purificação , Biodegradação Ambiental , Carbofurano/metabolismo , Diazinon/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Pseudomonas/isolamento & purificação , Solo/química , Glifosato
3.
Sci Total Environ ; 628-629: 528-538, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453182

RESUMO

Biobed systems are an important option to control point pollution in agricultural areas. Substrates used and microbial diversity present in a biomixture perform an essential function in pesticide dissipation. In this study, the effects of soil (50% of volume/volume [V/V] proportion for all biomixtures) and four soil-based biomixtures (miniaturized biobeds; addition of novel substrates from southeastern Mexico) on dissipation of high concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), atrazine, carbofuran, diazinon, and glyphosate and on microbial diversity in biomixtures were evaluated. Small residual amounts of all pesticides at 20 (<2%) and 41 (<1%) days were observed; however, the lowest efficiency rates were observed in soil. Glyphosate was the only pesticide that completely dissipated in soil and biomixtures. Archaea, bacteria, and fungi were identified in biobeds, with bacteria being the most diverse microorganisms according to the identified species. The presence of white-rot fungi (normally related to pesticide degradation in biomixtures) was observed. Effects of the pesticide type and of biomixtures on pesticide dissipation were significant (P<0.05); however, only the effect of biomixtures on microbial diversity was significant (P<0.05); microbial diversity and richness had a significant effect on the residual amount of pesticides (P<0.05). Microbial diversity in terms of phyla was directly related to physicochemical parameters such as organic matter, lignin, water-holding capacity, and pH of soil and biomixtures.


Assuntos
Biodegradação Ambiental , Praguicidas/metabolismo , Eliminação de Resíduos/métodos , Poluentes do Solo/metabolismo , México , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA