Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576080

RESUMO

Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4+ T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28% in ASA-treated mice compared to 56.11 ± 1.46% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A2 were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS.


Assuntos
Aspirina/farmacologia , Plaquetas/patologia , Encéfalo/patologia , Inflamação/patologia , Esclerose Múltipla/sangue , Esclerose Múltipla/patologia , Inibidores da Agregação Plaquetária/farmacologia , Animais , Aspirina/administração & dosagem , Aspirina/uso terapêutico , Plaquetas/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Tromboxano A2/biossíntese
2.
New Dir Child Adolesc Dev ; 2021(177): 77-99, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33942957

RESUMO

Guided by risk and resilience and attachment perspectives, the present study examined whether teacher-student relationship quality and school climate can buffer against the deleterious effects of perceived personal and group ethnic discrimination on psychological and academic domains. We conducted multilevel analyses of seventh graders (40 classrooms; N = 456; 47% female) with different cultural self-identifications in Germany. Partially confirming pre-registered hypotheses, results indicated that high levels of perceived personal discrimination were negatively associated with global self-esteem and emotional school engagement. Contrary to our expectations, neither perceived personal nor group discrimination negatively predicted academic self-concept. In addition, teacher-student relationship quality but not school climate buffered the relationship between both personal and group discrimination and global self-esteem and emotional school engagement such that the association was less negative when relationship quality was high. Taken together, our results underscore the importance of considering the different targets of discrimination (i.e., personal self and own group), and that positive teacher-student relationship can be especially beneficial and empowering for youth who are exposed to ethnic discrimination.


Assuntos
Pessoal de Educação , Estudantes , Adolescente , Emoções , Feminino , Humanos , Masculino , Instituições Acadêmicas , Autoimagem
4.
Neural Regen Res ; 14(11): 1950-1960, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31290453

RESUMO

Autoimmune diseases of the central nervous system (CNS) like multiple sclerosis (MS) are characterized by inflammation and demyelinated lesions in white and grey matter regions. While inflammation is present at all stages of MS, it is more pronounced in the relapsing forms of the disease, whereas progressive MS (PMS) shows significant neuroaxonal damage and grey and white matter atrophy. Hence, disease-modifying treatments beneficial in patients with relapsing MS have limited success in PMS. BAF312 (siponimod) is a novel sphingosine-1-phosphate receptor modulator shown to delay progression in PMS. Besides reducing inflammation by sequestering lymphocytes in lymphoid tissues, BAF312 crosses the blood-brain barrier and binds its receptors on neurons, astrocytes and oligodendrocytes. To evaluate potential direct neuroprotective effects, BAF312 was systemically or locally administered in the CNS of experimental autoimmune encephalomyelitis mice with distinct grey- and white-matter lesions (focal experimental autoimmune encephalomyelitis using an osmotic mini-pump). Ex-vivo flow cytometry revealed that systemic but not local BAF312 administration lowered immune cell infiltration in animals with both grey and white matter lesions. Ex-vivo voltage-sensitive dye imaging of acute brain slices revealed an altered spatio-temporal pattern of activation in the lesioned cortex compared to controls in response to electrical stimulation of incoming white-matter fiber tracts. Here, BAF312 administration showed partial restore of cortical neuronal circuit function. The data suggest that BAF312 exerts a neuroprotective effect after crossing the blood-brain barrier independently of peripheral effects on immune cells. Experiments were carried out in accordance with German and EU animal protection law and approved by local authorities (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen; 87-51.04.2010.A331) on December 28, 2010.

6.
Proc Natl Acad Sci U S A ; 116(1): 271-276, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559188

RESUMO

Blood-brain barrier (BBB) disruption and transendothelial trafficking of immune cells into the central nervous system (CNS) are pathophysiological hallmarks of neuroinflammatory disorders like multiple sclerosis (MS). Recent evidence suggests that the kallikrein-kinin and coagulation system might participate in this process. Here, we identify plasma kallikrein (KK) as a specific direct modulator of BBB integrity. Levels of plasma prekallikrein (PK), the precursor of KK, were markedly enhanced in active CNS lesions of MS patients. Deficiency or pharmacologic blockade of PK renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by a remarkable reduction of BBB disruption and CNS inflammation. In vitro analysis revealed that KK modulates endothelial cell function in a protease-activated receptor-2-dependent manner, leading to an up-regulation of the cellular adhesion molecules Intercellular Adhesion Molecule 1 and Vascular Cell Adhesion Molecule 1, thereby amplifying leukocyte trafficking. Our study demonstrates that PK is an important direct regulator of BBB integrity as a result of its protease function. Therefore, KK inhibition can decrease BBB damage and cell invasion during neuroinflammation and may offer a strategy for the treatment of MS.


Assuntos
Bradicinina/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Calicreínas/metabolismo , Receptor PAR-2/metabolismo , Animais , Barreira Hematoencefálica , Western Blotting , Bradicinina/fisiologia , Encefalomielite Autoimune Experimental/fisiopatologia , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Calicreínas/antagonistas & inibidores , Calicreínas/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/metabolismo , Receptor PAR-2/fisiologia
7.
Neurosignals ; 26(1): 77-93, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30481775

RESUMO

BACKGROUND/AIMS: Multiple sclerosis (MS) is a prototypical autoimmune central nervous system (CNS) disease. Particularly progressive forms of MS (PMS) show significant neuroaxonal damage as consequence of demyelination and neuronal hyperexcitation. Immuno-modulatory treatment strategies are beneficial in relapsing MS (RMS), but mostly fail in PMS. Pregabalin (Lyrica®) is prescribed to MS patients to treat neuropathic pain. Mechanistically, it targets voltage-dependent Ca2+ channels and reduces harmful neuronal hyperexcitation in mouse epilepsy models. Studies suggest that GABA analogues like pregabalin exert neuroprotective effects in animal models of ischemia and trauma. METHODS: We tested the impact of pregabalin in a mouse model of MS (experimental autoimmune encephalomyelitis, EAE) and performed histological and immunological evaluations as well as intravital two-photon-microscopy of brainstem EAE lesions. RESULTS: Both prophylactic and therapeutic treatments ameliorated the clinical symptoms of EAE and reduced immune cell infiltration into the CNS. On neuronal level, pregabalin reduced long-term potentiation in hippocampal brain slices indicating an impact on mechanisms of learning and memory. In contrast, T cells, microglia and brain endothelial cells were unaffected by pregabalin. However, we found a direct impact of pregabalin on neurons during CNS inflammation as it reversed the pathological elevation of neuronal intracellular Ca2+ levels in EAE lesions. CONCLUSION: The presented data suggest that pregabalin primarily acts on neuronal Ca2+ channel trafficking thereby reducing Ca2+-mediated cytotoxicity and neuronal damage in an animal model of MS. Future clinical trials need to assess the benefit for neuronal survival by expanding the indication for pregabalin administration to MS patients in further disease phases.

8.
Front Immunol ; 9: 1731, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105021

RESUMO

Background: The interaction of coagulation factors has been shown to go beyond their traditional roles in hemostasis and to affect the development of inflammatory diseases. Key molecular players, such as fibrinogen, thrombin, or factor XII have been mechanistically and epidemiologically linked to inflammatory disorders like multiple sclerosis (MS), rheumatoid arthritis (RA), and colitis. Objectives: To systematically review the evidence for a role of coagulation factors, especially factor XII, fibrinogen, and thrombin in inflammatory disorders like MS, RA, and bowel disorders. Methods: A systematic literature search was done in the PubMed database to identify studies about coagulation factors in inflammatory diseases. Original articles and reviews investigating the role of the kallikrein-kinin and the coagulation system in mouse and humans were included. Results: We identified 43 animal studies dealing with inflammatory disorders and factors of the kallikrein-kinin or the coagulation system. Different immunological influences are described and novel molecular mechanisms linking coagulation and inflammation are reported. Conclusion: A number of studies have highlighted coagulation factors to tip the balance between hemostasis and thrombosis and between protection from infection and extensive inflammation. To optimize the treatment of chronic inflammatory disorders by these factors, further studies are necessary.


Assuntos
Fator XII/metabolismo , Fibrinogênio/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Trombina/metabolismo , Animais , Coagulação Sanguínea , Fatores de Coagulação Sanguínea/metabolismo , Suscetibilidade a Doenças , Humanos , Inflamação/sangue , Transdução de Sinais
9.
Exp Neurol ; 309: 54-66, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30048715

RESUMO

Multiple sclerosis is characterized by intermingled episodes of de- and remyelination and the occurrence of white- and grey-matter damage. To mimic the randomly distributed pathophysiological brain lesions observed in MS, we assessed the impact of focal white and grey matter demyelination on thalamic function by directing targeted lysolecithin-induced lesions to the capsula interna (CI), the auditory cortex (A1), or the ventral medial geniculate nucleus (vMGN) in mice. Pathophysiological consequences were compared with those of cuprizone treatment at different stages of demyelination and remyelination. Combining single unit recordings and auditory stimulation in freely behaving mice revealed changes in auditory response profile and electrical activity pattern in the thalamus, depending on the region of the initial insult and the state of remyelination. Cuprizone-induced general demyelination significantly diminished vMGN neuronal activity and frequency-specific responses. Targeted lysolecithin-induced lesions directed either to A1 or to vMGN revealed a permanent impairment of frequency-specific responses, an increase in latency of auditory responses and a reduction in occurrence of burst firing in vMGN neurons. These findings indicate that demyelination of grey matter areas in the thalamocortical system permanently affects vMGN frequency specificity and the prevalence of bursting in the auditory thalamus.


Assuntos
Potenciais de Ação/fisiologia , Doenças Desmielinizantes/patologia , Tálamo/fisiopatologia , Estimulação Acústica/métodos , Potenciais de Ação/efeitos dos fármacos , Animais , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/fisiopatologia , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Feminino , Lateralidade Funcional , Corpos Geniculados/patologia , Gliose/induzido quimicamente , Gliose/patologia , Substância Cinzenta/patologia , Lisofosfatidilcolinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Monoaminoxidase/toxicidade , Proteína Proteolipídica de Mielina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Psicoacústica , Tálamo/efeitos dos fármacos
10.
Brain Struct Funct ; 223(7): 3091-3106, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29744572

RESUMO

Alterations in cortical cellular organization, network functionality, as well as cognitive and locomotor deficits were recently suggested to be pathological hallmarks in multiple sclerosis and corresponding animal models as they might occur following demyelination. To investigate functional changes following demyelination in a well-defined, topographically organized neuronal network, in vitro and in vivo, we focused on the primary auditory cortex (A1) of mice in the cuprizone model of general de- and remyelination. Following myelin loss in this model system, the spatiotemporal propagation of incoming stimuli in A1 was altered and the hierarchical activation of supra- and infragranular cortical layers was lost suggesting a profound effect exerted on neuronal network level. In addition, the response latency in field potential recordings and voltage-sensitive dye imaging was increased following demyelination. These alterations were accompanied by a loss of auditory discrimination abilities in freely behaving animals, a reduction of the nuclear factor-erythroid 2-related factor-2 (Nrf-2) protein in the nucleus in histological staining and persisted during remyelination. To find new strategies to restore demyelination-induced network alteration in addition to the ongoing remyelination, we tested the cytoprotective potential of dimethyl fumarate (DMF). Therapeutic treatment with DMF during remyelination significantly modified spatiotemporal stimulus propagation in the cortex, reduced the cognitive impairment, and prevented the demyelination-induced decrease in nuclear Nrf-2. These results indicate the involvement of anti-oxidative mechanisms in regulating spatiotemporal cortical response pattern following changes in myelination and point to DMF as therapeutic compound for intervention.


Assuntos
Córtex Auditivo/patologia , Fumarato de Dimetilo/uso terapêutico , Imunossupressores/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Remielinização/efeitos dos fármacos , Animais , Ansiedade , Córtex Auditivo/diagnóstico por imagem , Escala de Avaliação Comportamental , Cuprizona/farmacologia , Fumarato de Dimetilo/administração & dosagem , Modelos Animais de Doenças , Estimulação Elétrica , Imunossupressores/administração & dosagem , Locomoção/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Imagens com Corantes Sensíveis à Voltagem
11.
Mult Scler ; 24(4): 432-439, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29512406

RESUMO

Multiple sclerosis (MS) is a common neurological disorder of putative autoimmune origin. Clinical studies delineate abnormal expression of specific cytokines over the course of disease. Preclinical studies using animal models of MS have yielded promising results in manipulating the activity of certain cytokines to improve the clinical outcome. However, the translation of these findings into the clinic is often disappointing. The reason for this might be the complex nature of cytokine networks and the pathogenesis of neuroinflammation, as well as an oversimplified interpretation of preclinical observations. This review presents an overview on cytokines that potentially contribute to the development of MS and provides examples of success and failure in translating basic science into clinical benefit for people with MS.


Assuntos
Doenças Autoimunes/imunologia , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/metabolismo , Animais , Doenças Autoimunes/metabolismo , Citocinas/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Humanos , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Pesquisa
13.
Front Neurol ; 8: 517, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033890

RESUMO

Severe mercury intoxication is very rare in developed countries, but still occurs as the result of volatile substance abuse, suicide attempts, occupational hazards, or endemic food ingestion as reported in the cases of public health disasters in Iraq and in Minamata Bay, Japan. Here, we describe the dramatic physical and cognitive decline of a 23-year-old patient caused by a severe methyl mercury (MeHg) intoxication of unknown origin. We show serial magnetic resonance imaging (MRI) of the patient's brain, as well as ex vivo analyses of blood and cerebrospinal fluid including multicolor flow cytometric measurements, functional assays of hemostaseologic efficacy, and evaluation of regulatory effector molecules. Together with the clinical history, our findings show the progressive neuronal degeneration accompanying the deterioration of the patient. Moreover, the ex vivo analyses display alterations of thrombocyte function and coagulation, as well as an immunological milieu facilitating autoimmunity. Despite the successful reduction of the MeHg concentration in the patient's blood with erythrocyte apheresis and chelator therapy, his condition did not improve and led to a persistent vegetative state. This case illustrates the neurotoxicity of MeHg following severe intoxication for the first time by serial MRI. Data on immune-cell and thrombocyte function as well as on coagulation in mercury poisoning reveal potential implications for anticoagulation and immunomodulatory treatment.

14.
J Neuroimmunol ; 313: 125-128, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28992973

RESUMO

Recent studies have implicated an important role for coagulation factors in neuroinflammatory disorders like multiple sclerosis (MS). Here, we investigate the role of factor X (FX) in neuroinflammation by using rivaroxaban the selective inhibitor of activated FX (FXa) in experimental autoimmune encephalomyelitis (EAE, an animal model of MS). Rivaroxaban-treated rats were less susceptible to EAE compared to the untreated control group. This finding was accompanied by reduced T-cell infiltration and microglia activation. Our study identifies FX as a possible target in neuroinflammatory diseases. As FXa inhibitors are approved for other disorders, FXa blockade could serve as a fast available medication.


Assuntos
Inibidores do Fator Xa/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Rivaroxabana/uso terapêutico , Análise de Variância , Animais , Antígenos CD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/metabolismo , Inflamação/tratamento farmacológico , Inflamação/etiologia , Linfonodos/patologia , Proteínas dos Microfilamentos/metabolismo , Esclerose Múltipla/patologia , Ratos , Ratos Endogâmicos Lew , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
15.
Brain Behav Immun ; 59: 103-117, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27569659

RESUMO

Myelin loss is a severe pathological hallmark common to a number of neurodegenerative diseases, including multiple sclerosis (MS). Demyelination in the central nervous system appears in the form of lesions affecting both white and gray matter structures. The functional consequences of demyelination on neuronal network and brain function are not well understood. Current therapeutic strategies for ameliorating the course of such diseases usually focus on promoting remyelination, but the effectiveness of these approaches strongly depends on the timing in relation to the disease state. In this study, we sought to characterize the time course of sensory and behavioral alterations induced by de- and remyelination to establish a rational for the use of remyelination strategies. By taking advantage of animal models of general and focal demyelination, we tested the consequences of myelin loss on the functionality of the auditory thalamocortical system: a well-studied neuronal network consisting of both white and gray matter regions. We found that general demyelination was associated with a permanent loss of the tonotopic cortical organization in vivo, and the inability to induce tone-frequency-dependent conditioned behaviors, a status persisting after remyelination. Targeted, focal lysolecithin-induced lesions in the white matter fiber tract, but not in the gray matter regions of cortex, were fully reversible at the morphological, functional and behavioral level. These findings indicate that remyelination of white and gray matter lesions have a different functional regeneration potential, with the white matter being able to regain full functionality while cortical gray matter lesions suffer from permanently altered network function. Therefore therapeutic interventions aiming for remyelination have to consider both region- and time-dependent strategies.


Assuntos
Córtex Cerebral/fisiopatologia , Doenças Desmielinizantes/fisiopatologia , Rede Nervosa/fisiopatologia , Imunidade Adaptativa , Animais , Comportamento Animal , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/psicologia , Eletrodos Implantados , Substância Cinzenta/patologia , Lisofosfatidilcolinas , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/patologia , Recuperação de Função Fisiológica , Sensação , Substância Branca/patologia
16.
Int J Mol Sci ; 17(10)2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27754414

RESUMO

Beyond their indispensable role in hemostasis, platelets have shown to affect the development of inflammatory disorders, as they have been epidemiologically and mechanistically linked to diseases featuring an inflammatory reaction in inflammatory diseases like multiple sclerosis, rheumatoid arthritis and inflammatory bowel disorders. The identification of novel molecular mechanisms linking inflammation and to platelets has highlighted them as new targets for therapeutic interventions. In particular, genetic and pharmacological studies have identified an important role for platelets in neuroinflammation. This review summarizes the main molecular links between platelets and inflammation, focusing on immune regulatory factors, receptors, cellular targets and signaling pathways by which they can amplify inflammatory reactions and that make them potential therapeutic targets.


Assuntos
Doenças Autoimunes/imunologia , Plaquetas/imunologia , Plaquetas/patologia , Inflamação/imunologia , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Doenças Autoimunes/patologia , Humanos , Inflamação/patologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia
17.
Ann Neurol ; 80(6): 946-951, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27774643

RESUMO

Animal models have implicated an integral role for coagulation factors in neuroinflammatory diseases such as multiple sclerosis (MS) beyond their role in hemostasis. However, their relevance in humans requires further elucidation. This study aimed to determine whether levels of coagulation factors differ between patients with neuroimmunological disorders and respective controls. Individuals suffering from relapsing-remitting and secondary progressive MS had significantly higher prothrombin and factor X levels than healthy donors, whereas levels were unchanged in primary progressive MS and neuromyelitis optica patients. Our study demonstrates that coagulation factors may be key mediators in neuroinflammation and may therefore provide future targets for therapeutic strategies. Ann Neurol 2016;80:946-951.


Assuntos
Fator X/metabolismo , Esclerose Múltipla Crônica Progressiva/sangue , Esclerose Múltipla Recidivante-Remitente/sangue , Protrombina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Fatores de Coagulação Sanguínea/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuromielite Óptica/sangue , Adulto Jovem
18.
J Neuroinflammation ; 13(1): 160, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27334140

RESUMO

BACKGROUND: Demyelination and remyelination are common pathological processes in many neurological disorders, including multiple sclerosis (MS). Clinical evidence suggests extensive involvement of the thalamocortical (TC) system in patients suffering from MS. METHODS: Using murine brain slices of the primary auditory cortex, we investigated the functional consequences of cuprizone-induced de- and remyelination on neuronal activity and auditory TC synaptic transmission in vitro. RESULTS: Our results revealed an impact of myelin loss and restoration on intrinsic cellular firing patterns, synaptic transmission, and neuronal plasticity in layer 3 and 4 neurons of the auditory TC network. While there was a complex hyper- and depolarizing shift of the resting membrane potential, spontaneous and induced action potential firing was reduced during demyelination and early remyelination. In addition, excitatory postsynaptic potential amplitudes were decreased and induction of LTP was reduced during demyelination. CONCLUSIONS: These data indicate that demyelination-induced impairment of neurons and network activity within the TC system may underlie clinical symptoms observed in demyelinating diseases, corroborating human findings that disease progression is significantly correlated with microstructural tissue damage of the TC system. Further investigation into focal inflammation-induced demyelination models ex vivo and in vivo are needed to understand the functional implication of local and remote lesion formation on TC network activity in MS.


Assuntos
Córtex Auditivo/patologia , Vias Auditivas/efeitos dos fármacos , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Inibidores da Monoaminoxidase/toxicidade , Tálamo/patologia , Potenciais de Ação/efeitos dos fármacos , Animais , Vias Auditivas/fisiopatologia , Biofísica , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Estimulação Elétrica , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Proteína Proteolipídica de Mielina , Neurônios/efeitos dos fármacos , Neurônios/patologia , Técnicas de Patch-Clamp , Potenciais Sinápticos/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Fatores de Tempo
19.
Nat Commun ; 7: 11626, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27188843

RESUMO

Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders.


Assuntos
Imunidade Adaptativa , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Fator XII/imunologia , Esclerose Múltipla/imunologia , Adulto , Idoso , Animais , Diferenciação Celular , Fator XII/metabolismo , Feminino , Humanos , Interleucina-17/metabolismo , Calicreínas/metabolismo , Cininas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Linfócitos T/metabolismo , Adulto Jovem
20.
Neurol Neuroimmunol Neuroinflamm ; 3(1): e195, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26848486

RESUMO

OBJECTIVE: The aim of the study was to analyze John Cunningham virus (JCV) serology in natalizumab-treated patients over time and assess whether they are influenced by natalizumab treatment. METHODS: German (n = 1,921; 525 longitudinally) and French (n = 1,259; 711 longitudinally) patients were assessed for JCV serology alongside their therapy with natalizumab. RESULTS: JCV serostatus changed in 69 of 525 longitudinally followed German patients (13.1%) over 14.8 months. Seroconversion according to serostatus was seen in 43 of 339 initially JCV- German patients (12.7% in 14.8 months; 10.3% per year) and 41 of 243 initially JCV- French patients (16.9% in 24 months; 8.5% per year). JCV index values could be reproduced (R (2) = 0.89) with the caveat of 8 of 50 samples (16%) being set into different risk categories between 2 assessments. Index values of JCV+ patients rose over time (p = 0.009) but not because of aging. Treatment with natalizumab was associated with a 15.9% increase of value in JCV+ patients in 14.8 months (12.9% per year). CONCLUSIONS: JCV seroconversion and index values may be influenced by treatment with natalizumab. It is therefore important to monitor patients' JCV serology but also to incorporate additional risk factors into the progressive multifocal leukoencephalopathy risk stratification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA