Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 122(1): 11-28, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38770591

RESUMO

The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ54, hpf involved in ribosome hibernation, rapZ regulating glucosamine-6-phosphate levels, and two genes encoding proteins of the nitrogen-related phosphotransferase system. Little is known about regulatory mechanisms controlling the abundance of these proteins. This study employs transposon mutagenesis and chemical screens to dissect the complex expression of the rpoN operon. We find that envelope stress conditions trigger read-through transcription into the rpoN operon from a promoter located upstream of the preceding lptA-lptB locus. This promoter is controlled by the envelope stress sigma factor E and response regulator PhoP is required for its full response to a subset of stress signals. σE also stimulates ptsN-rapZ-npr expression using an element downstream of rpoN, presumably by interfering with mRNA processing by RNase E. Additionally, we identify a novel promoter in the 3' end of rpoN that directs transcription of the distal genes in response to ethanol. Finally, we show that translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq, perhaps involving small RNAs. Collectively, our work demonstrates that the rpoN operon is subject to complex regulation, integrating signals related to envelope stress and carbon source quality.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Óperon , Regiões Promotoras Genéticas , Fator sigma , Óperon/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fator sigma/metabolismo , Fator sigma/genética , Estresse Fisiológico/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Transcrição Gênica , Endorribonucleases
2.
Methods Mol Biol ; 2741: 255-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217658

RESUMO

Bacterial small RNAs (sRNAs) can be equipped at the 5' end with triphosphate (5'PPP) or monophosphate (5'P) groups, depending on whether they are primary transcripts, undergo dephosphorylation or originate via processing. Often, 5' groups hallmark RNAs for rapid decay, but whether this also applies to sRNAs is little explored. Moreover, the sRNA 5'P group could activate endoribonuclease RNase E to cleave the base-paired target RNA, but a tool for investigation in vivo was lacking. Here, we describe a two-plasmid system suitable for the generation of 5' monophosphorylated RNAs on demand inside the cell. The sRNA gene of interest is fused to the 3' end of a fragment of sRNA GlmZ and transcribed from a plasmid in an IPTG-inducible manner. The fusion RNA gets cleaved upon arabinose-controlled expression of rapZ, provided on a compatible plasmid. Adaptor protein RapZ binds the GlmZ aptamer and directs RNase E to release the sRNA of choice with 5'P ends. An isogenic plasmid generating the same sRNA with a 5'PPP end allows for direct comparison. The fates of the sRNA variants and target RNA(s) are monitored by Northern blotting. This tool is applicable to E. coli and likely other enteric bacteria.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fosforilação , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Estabilidade de RNA , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
Nucleic Acids Res ; 51(10): 5125-5143, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-36987877

RESUMO

In enteric bacteria, several small RNAs (sRNAs) including MicC employ endoribonuclease RNase E to stimulate target RNA decay. A current model proposes that interaction of the sRNA 5' monophosphate (5'P) with the N-terminal sensing pocket of RNase E allosterically activates cleavage of the base-paired target in the active site. In vivo evidence supporting this model is lacking. Here, we engineered a genetic tool allowing us to generate 5' monophosphorylated sRNAs of choice in a controllable manner in the cell. Four sRNAs were tested and none performed better in target destabilization when 5' monophosphorylated. MicC retains full activity even when RNase E is defective in 5'P sensing, whereas regulation is lost upon removal of its scaffolding domain. Interestingly, sRNAs MicC and RyhB that originate with a 5' triphosphate group are dramatically destabilized when 5' monophosphorylated, but stable when in 5' triphosphorylated form. In contrast, the processing-derived sRNAs CpxQ and SroC, which carry 5'P groups naturally, are highly stable. Thus, the 5' phosphorylation state determines stability of naturally triphosphorylated sRNAs, but plays no major role for target RNA destabilization in vivo. In contrast, the RNase E C-terminal half is crucial for MicC-mediated ompD decay, suggesting that interaction with Hfq is mandatory.


Assuntos
RNA Bacteriano , Pequeno RNA não Traduzido , RNA Mensageiro/metabolismo , Fosforilação , RNA Bacteriano/metabolismo , Bactérias/genética , Bactérias/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Estabilidade de RNA/genética , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética
4.
EMBO J ; 42(2): e112574, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36504162

RESUMO

Biogenesis of the essential precursor of the bacterial cell envelope, glucosamine-6-phosphate (GlcN6P), is controlled by intricate post-transcriptional networks mediated by GlmZ, a small regulatory RNA (sRNA). GlmZ stimulates translation of the mRNA encoding GlcN6P synthtase in Escherichia coli, but when bound by RapZ protein, the sRNA becomes inactivated through cleavage by the endoribonuclease RNase E. Here, we report the cryoEM structure of the RapZ:GlmZ complex, revealing a complementary match of the RapZ tetrameric quaternary structure to structural repeats in the sRNA. The nucleic acid is contacted by RapZ mostly through a highly conserved domain that shares an evolutionary relationship with phosphofructokinase and suggests links between metabolism and riboregulation. We also present the structure of a precleavage intermediate formed between the binary RapZ:GlmZ complex and RNase E that reveals how GlmZ is presented and recognised by the enzyme. The structures provide a framework for understanding how other encounter complexes might guide recognition and action of endoribonucleases on target transcripts, and how structured substrates in polycistronic precursors may be recognised for processing by RNase E.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Ribonucleoproteínas/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética
5.
RNA ; 26(9): 1198-1215, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32424019

RESUMO

In Escherichia coli, endoribonuclease RNase E initiates degradation of many RNAs and represents a hub for post-transcriptional regulation. The tetrameric adaptor protein RapZ targets the small regulatory RNA GlmZ to degradation by RNase E. RapZ binds GlmZ through a domain located at the carboxyl terminus and interacts with RNase E, promoting GlmZ cleavage in the base-pairing region. When necessary, cleavage of GlmZ is counteracted by the homologous small RNA GlmY, which sequesters RapZ through molecular mimicry. In the current study, we addressed the molecular mechanism employed by RapZ. We show that RapZ mutants impaired in RNA-binding but proficient in binding RNase E are able to stimulate GlmZ cleavage in vivo and in vitro when provided at increased concentrations. In contrast, a truncated RapZ variant retaining RNA-binding activity but incapable of contacting RNase E lacks this activity. In agreement, we find that tetrameric RapZ binds the likewise tetrameric RNase E through direct interaction with its large globular domain within the catalytic amino terminus, independent of RNA. Although RapZ stimulates cleavage of at least one non-cognate RNA by RNase E in vitro, its activity is restricted to GlmZ in vivo as revealed by RNA sequencing, suggesting that certain features within the RNA substrate are also required for cleavage. In conclusion, RapZ boosts RNase E activity through interaction with its catalytic domain, which represents a novel mechanism of RNase E activation. In contrast, RNA-binding has a recruiting role, increasing the likelihood that productive RapZ/GlmZ/RNase E complexes form.


Assuntos
Endorribonucleases/genética , Proteínas de Escherichia coli/genética , Mapas de Interação de Proteínas/genética , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Pareamento de Bases/genética , Catálise , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Mimetismo Molecular/genética , Estabilidade de RNA/genética
6.
Microb Cell ; 7(5): 139-142, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32391395

RESUMO

Synthesis of glucosamine-6-phosphate (GlcN6P) by the enzyme GlmS initiates bacterial cell envelope biosynthesis. To ensure ongoing synthesis, GlcN6P homeostasis is required. Escherichia coli achieves this through a post-transcriptional control mechanism comprising the RNA-binding protein RapZ and small RNAs (sRNAs) GlmY and GlmZ. GlmZ stimulates glmS translation by base-pairing. When GlcN6P is abundant, GlmZ is cleaved and inactivated by endoribonuclease RNase E. Cleavage depends on RapZ, which binds GlmZ and recruits RNase E. Decreasing GlcN6P concentrations provoke up-regulation of the decoy sRNA GlmY which sequesters RapZ, thereby suppressing GlmZ decay. In our current study we identify RapZ as the GlcN6P sensor. GlcN6P-free RapZ interacts with and stimulates phosphorylation of the two-component system (TCS) QseE/QseF triggering glmY expression. Thereby generated GlmY sequesters RapZ into stable complexes, allowing for glmS expression. Sequestration by GlmY also disables RapZ to stimulate QseE/QseF, providing a negative feed-back loop limiting the response. When GlcN6P is replenished, GlmY is released from RapZ and rapidly degraded. Our work has revealed a complex regulatory scenario, in which an RNA binding protein senses a metabolite and communicates with two sRNAs, a TCS and ribonuclease RNase E to achieve metabolite homeostasis.

7.
EMBO J ; 39(6): e103848, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32065419

RESUMO

The RNA-binding protein RapZ cooperates with small RNAs (sRNAs) GlmY and GlmZ to regulate the glmS mRNA in Escherichia coli. Enzyme GlmS synthesizes glucosamine-6-phosphate (GlcN6P), initiating cell envelope biosynthesis. GlmZ activates glmS expression by base-pairing. When GlcN6P is ample, GlmZ is bound by RapZ and degraded through ribonuclease recruitment. Upon GlcN6P depletion, the decoy sRNA GlmY accumulates through a previously unknown mechanism and sequesters RapZ, suppressing GlmZ decay. This circuit ensures GlcN6P homeostasis and thereby envelope integrity. In this work, we identify RapZ as GlcN6P receptor. GlcN6P-free RapZ stimulates phosphorylation of the two-component system QseE/QseF by interaction, which in turn activates glmY expression. Elevated GlmY levels sequester RapZ into stable complexes, which prevents GlmZ decay, promoting glmS expression. Binding of GlmY also prevents RapZ from activating QseE/QseF, generating a negative feedback loop limiting the response. When GlcN6P is replenished, GlmY is released from RapZ and rapidly degraded. We reveal a multifunctional sRNA-binding protein that dynamically engages into higher-order complexes for metabolite signaling.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Glucosamina/análogos & derivados , Glucose-6-Fosfato/análogos & derivados , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glucosamina/metabolismo , Glucose-6-Fosfato/metabolismo , RNA Bacteriano/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Receptores Adrenérgicos/genética , Receptores Adrenérgicos/metabolismo
8.
RNA Biol ; 16(8): 1055-1065, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31116083

RESUMO

Many bacterial small RNAs (sRNAs) are processed resulting in variants with roles potentially distinct from the primary sRNAs. In Enterobacteriaceae sRNA GlmZ activates expression of glmS by base-pairing when the levels of glucosamine-6-phosphate (GlcN6P) are low. GlmS synthesizes GlcN6P, which is required for cell envelope biosynthesis. When dispensable, GlmZ is cleaved by RNase E in the base-pairing sequence. Processing requires protein RapZ, which binds GlmZ and recruits RNase E by interaction. Cleavage is counteracted by the homologous sRNA GlmY, which accumulates upon GlcN6P scarcity and sequesters RapZ. Here, we report a novel role for a processed sRNA. We observed that processing of GlmZ is never complete in vivo. Even upon RapZ overproduction, a fraction of GlmZ remains full-length, while the 5' cleavage product (GlmZ*) accumulates. GlmZ* retains all elements required for RapZ binding. Accordingly, GlmZ* can displace full-length GlmZ from RapZ and counteract processing in vitro. To mimic GlmZ* in vivo, sRNA chimeras were employed consisting of foreign 3' ends including a terminator fused to the 3' end of GlmZ*. In vitro, these chimeras perform indistinguishable from GlmZ*. Expression of the chimeras in vivo inhibited processing of endogenous GlmZ, causing moderate upregulation of GlmS synthesis. Hence, accumulation of GlmZ* prevents complete GlmZ turnover. This mechanism may serve to adjust a robust glmS basal expression level that is buffered against fluctuations in RapZ availability.


Assuntos
Proteínas de Bactérias/genética , Endorribonucleases/genética , Proteínas de Escherichia coli/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Escherichia coli/genética , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica/genética , Glucosamina/análogos & derivados , Glucosamina/genética , Glucose-6-Fosfato/análogos & derivados , Glucose-6-Fosfato/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética
9.
PLoS Genet ; 14(7): e1007547, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30040820

RESUMO

Histidine kinase QseE and response regulator QseF compose a two-component system in Enterobacteriaceae. In Escherichia coli K-12 QseF activates transcription of glmY and of rpoE from Sigma 54-dependent promoters by binding to upstream activating sequences. Small RNA GlmY and RpoE (Sigma 24) are important regulators of cell envelope homeostasis. In pathogenic Enterobacteriaceae QseE/QseF are required for virulence. In enterohemorrhagic E. coli QseE was reported to sense the host hormone epinephrine and to regulate virulence genes post-transcriptionally through employment of GlmY. The qseEGF operon contains a third gene, qseG, which encodes a lipoprotein attached to the inner leaflet of the outer membrane. Here, we show that QseG is essential and limiting for activity of QseE/QseF in E. coli K-12. Metabolic 32P-labelling followed by pull-down demonstrates that phosphorylation of the receiver domain of QseF in vivo requires QseE as well as QseG. Accordingly, QseG acts upstream and through QseE/QseF by stimulating activity of kinase QseE. 32P-labelling also reveals an additional phosphorylation in the QseF C-terminus of unknown origin, presumably at threonine/serine residue(s). Pulldown and two-hybrid assays demonstrate interaction of QseG with the periplasmic loop of QseE. A mutational screen identifies the Ser58Asn exchange in the periplasmic loop of QseE, which decreases interaction with QseG and concomitantly lowers QseE/QseF activity, indicating that QseG activates QseE by interaction. Finally, epinephrine is shown to have a moderate impact on QseE activity in E. coli K-12. Epinephrine slightly stimulates QseF phosphorylation and thereby glmY transcription, but exclusively during stationary growth and this requires both, QseE and QseG. Our data reveal a three-component signaling system, in which the phosphorylation state of QseE/QseF is governed by interaction with lipoprotein QseG in response to a signal likely derived from the cell envelope.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli K12/fisiologia , Proteínas de Escherichia coli/metabolismo , Periplasma/metabolismo , Receptores Adrenérgicos/metabolismo , Epinefrina/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Óperon/genética , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/fisiologia , Transcrição Gênica/efeitos dos fármacos
10.
J Biol Chem ; 293(16): 5781-5792, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29514981

RESUMO

Utilization of energy-rich carbon sources such as glucose is fundamental to the evolutionary success of bacteria. Glucose can be catabolized via glycolysis for feeding the intermediary metabolism. The methylglyoxal synthase MgsA produces methylglyoxal from the glycolytic intermediate dihydroxyacetone phosphate. Methylglyoxal is toxic, requiring stringent regulation of MgsA activity. In the Gram-positive bacterium Bacillus subtilis, an interaction with the phosphoprotein Crh controls MgsA activity. In the absence of preferred carbon sources, Crh is present in the nonphosphorylated state and binds to and thereby inhibits MgsA. To better understand the mechanism of regulation of MgsA, here we performed biochemical and structural analyses of B. subtilis MgsA and of its interaction with Crh. Our results indicated that MgsA forms a hexamer (i.e. a trimer of dimers) in the crystal structure, whereas it seems to exist in an equilibrium between a dimer and hexamer in solution. In the hexamer, two alternative dimers could be distinguished, but only one appeared to prevail in solution. Further analysis strongly suggested that the hexamer is the biologically active form. In vitro cross-linking studies revealed that Crh interacts with the N-terminal helices of MgsA and that the Crh-MgsA binding inactivates MgsA by distorting and thereby blocking its active site. In summary, our results indicate that dimeric and hexameric MgsA species exist in an equilibrium in solution, that the hexameric species is the active form, and that binding to Crh deforms and blocks the active site in MgsA.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Liases/metabolismo , Fosfoproteínas/metabolismo , Mapas de Interação de Proteínas , Bacillus subtilis/química , Proteínas de Bactérias/química , Ciclo do Carbono , Carbono-Oxigênio Liases/química , Cristalografia por Raios X , Modelos Moleculares , Fosfoproteínas/química , Conformação Proteica , Multimerização Proteica
11.
Microbiol Spectr ; 6(2)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29573258

RESUMO

Survival of bacteria in ever-changing habitats with fluctuating nutrient supplies requires rapid adaptation of their metabolic capabilities. To this end, carbohydrate metabolism is governed by complex regulatory networks including posttranscriptional mechanisms that involve small regulatory RNAs (sRNAs) and RNA-binding proteins. sRNAs limit the response to substrate availability and set the threshold or time required for induction and repression of carbohydrate utilization systems. Carbon catabolite repression (CCR) also involves sRNAs. In Enterobacteriaceae, sRNA Spot 42 cooperates with the transcriptional regulator cyclic AMP (cAMP)-receptor protein (CRP) to repress secondary carbohydrate utilization genes when a preferred sugar is consumed. In pseudomonads, CCR operates entirely at the posttranscriptional level, involving RNA-binding protein Hfq and decoy sRNA CrcZ. Moreover, sRNAs coordinate fluxes through central carbohydrate metabolic pathways with carbohydrate availability. In Gram-negative bacteria, the interplay between RNA-binding protein CsrA and its cognate sRNAs regulates glycolysis and gluconeogenesis in response to signals derived from metabolism. Spot 42 and cAMP-CRP jointly downregulate tricarboxylic acid cycle activity when glycolytic carbon sources are ample. In addition, bacteria use sRNAs to reprogram carbohydrate metabolism in response to anaerobiosis and iron limitation. Finally, sRNAs also provide homeostasis of essential anabolic pathways, as exemplified by the hexosamine pathway providing cell envelope precursors. In this review, we discuss the manifold roles of bacterial sRNAs in regulation of carbon source uptake and utilization, substrate prioritization, and metabolism.


Assuntos
Bactérias/metabolismo , Metabolismo dos Carboidratos/fisiologia , Pequeno RNA não Traduzido/metabolismo , Açúcares/metabolismo , Bactérias/genética , Repressão Catabólica , Ciclo do Ácido Cítrico/fisiologia , Proteína Receptora de AMP Cíclico/metabolismo , Regulação para Baixo , Enterobacteriaceae/metabolismo , Regulação Bacteriana da Expressão Gênica , Gluconeogênese/fisiologia , Glicólise/fisiologia , Hexosaminas/metabolismo , Homeostase , Fator Proteico 1 do Hospedeiro/metabolismo , Redes e Vias Metabólicas , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA , Proteínas Repressoras/metabolismo , Transdução de Sinais , Transativadores
12.
Nucleic Acids Res ; 45(18): 10845-10860, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977623

RESUMO

In phylogenetically diverse bacteria, the conserved protein RapZ plays a central role in RNA-mediated regulation of amino-sugar metabolism. RapZ contributes to the control of glucosamine phosphate biogenesis by selectively presenting the regulatory small RNA GlmZ to the essential ribonuclease RNase E for inactivation. Here, we report the crystal structures of full length Escherichia coli RapZ at 3.40 Å and 3.25 Å, and its isolated C-terminal domain at 1.17 Å resolution. The structural data confirm that the N-terminal domain of RapZ possesses a kinase fold, whereas the C-terminal domain bears closest homology to a subdomain of 6-phosphofructokinase, an important enzyme in the glycolytic pathway. RapZ self-associates into a domain swapped dimer of dimers, and in vivo data support the importance of quaternary structure in RNA-mediated regulation of target gene expression. Based on biochemical, structural and genetic data, we suggest a mechanism for binding and presentation by RapZ of GlmZ and the closely related decoy sRNA, GlmY. We discuss a scenario for the molecular evolution of RapZ through re-purpose of enzyme components from central metabolism.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Ligação a RNA/química , Amino Açúcares/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , RNA/metabolismo , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Mol Microbiol ; 106(1): 54-73, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28714556

RESUMO

The two-component system KdpD/KdpE governs K+ homeostasis by controlling synthesis of the high affinity K+ transporter KdpFABC. When sensing low environmental K+ concentrations, the dimeric kinase KdpD autophosphorylates in trans and transfers the phosphoryl-group to the response regulator KdpE, which subsequently activates kdpFABC transcription. In Escherichia coli, KdpD can also be activated by interaction with the non-phosphorylated form of the accessory protein PtsN. PtsN stimulates KdpD kinase activity thereby increasing phospho-KdpE levels. Here, we analyzed the interplay between KdpD/KdpE and PtsN. PtsN binds specifically to the catalytic DHp domain of KdpD, which is also contacted by KdpE. Accordingly, PtsN and KdpE compete for binding, providing a paradox. Low levels of non-phosphorylated PtsN stimulate, whereas high amounts reduce kdpFABC expression by blocking access of KdpE to KdpD. Ligand fishing experiments provided insight as they revealed ternary complex formation of PtsN/KdpD2 /KdpE in vivo demonstrating that PtsN and KdpE bind different protomers in the KdpD dimer. PtsN may bind one protomer to stimulate phosphorylation of the second KdpD protomer, which then phosphorylates bound KdpE. Phosphorylation of PtsN prevents its incorporation in ternary complexes. Interaction with the conserved DHp domain enables PtsN to regulate additional kinases such as PhoR.


Assuntos
Proteínas de Escherichia coli/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Proteínas Quinases/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Histidina Quinase , Proteínas de Membrana Transportadoras/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Fosforilação , Potássio/metabolismo , Domínios Proteicos , Subunidades Proteicas/metabolismo , Transdução de Sinais , Transativadores/metabolismo
14.
Carbohydr Res ; 448: 79-87, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28628891

RESUMO

6-Sulfo-6-deoxy-D-glucosamine (GlcN6S), 6-sulfo-6-deoxy-D-glucosaminitol (ADGS) and their N-acetyl and methyl ester derivatives have been synthesized and tested as inhibitors of enzymes catalyzing reactions of the UDP-GlcNAc pathway in bacteria and yeasts. GlcN6S and ADGS at micromolar concentrations inhibited glucosamine-6-phosphate (GlcN6P) synthase of microbial origin. The former was also inhibitory towards fungal GlcN6P N-acetyl transferase, but at millimolar concentrations. Both compounds and their N-acetyl derivatives exhibited antimicrobial in vitro activity, with MICs in the 0.125-2.0 mg mL-1 range. Antibacterial but not antifungal activity of GlcN6S was potentiated by D-glucosamine and a synergistic antibacterial effect was observed for combination of ADGP and a dipeptide Nva-FMDP.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Glucosamina/síntese química , Glucosamina/farmacologia , Tioaçúcares/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Técnicas de Química Sintética , Glucosamina/química , Glucosamina/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/antagonistas & inibidores , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/química , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Espaço Intracelular/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Conformação Proteica , Tioaçúcares/síntese química , Tioaçúcares/química , Tioaçúcares/metabolismo
15.
Front Microbiol ; 8: 803, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529506

RESUMO

The emergence of antibiotic resistance mechanisms among bacterial pathogens increases the demand for novel treatment strategies. Lately, the contribution of non-coding RNAs to antibiotic resistance and their potential value as drug targets became evident. RNA attenuator elements in mRNA leader regions couple expression of resistance genes to the presence of the cognate antibiotic. Trans-encoded small RNAs (sRNAs) modulate antibiotic tolerance by base-pairing with mRNAs encoding functions important for resistance such as metabolic enzymes, drug efflux pumps, or transport proteins. Bacteria respond with extensive changes of their sRNA repertoire to antibiotics. Each antibiotic generates a unique sRNA profile possibly causing downstream effects that may help to overcome the antibiotic challenge. In consequence, regulatory RNAs including sRNAs and their protein interaction partners such as Hfq may prove useful as targets for antimicrobial chemotherapy. Indeed, several compounds have been developed that kill bacteria by mimicking ligands for riboswitches controlling essential genes, demonstrating that regulatory RNA elements are druggable targets. Drugs acting on sRNAs are considered for combined therapies to treat infections. In this review, we address how regulatory RNAs respond to and establish resistance to antibiotics in bacteria. Approaches to target RNAs involved in intrinsic antibiotic resistance or virulence for chemotherapy will be discussed.

16.
Front Microbiol ; 7: 908, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379045

RESUMO

Formation of glucosamine-6-phosphate (GlcN6P) by enzyme GlcN6P synthase (GlmS) represents the first step in bacterial cell envelope synthesis. In Escherichia coli, expression of glmS is controlled by small RNAs (sRNAs) GlmY and GlmZ. GlmZ activates the glmS mRNA by base-pairing. When not required, GlmZ is bound by adapter protein RapZ and recruited to cleavage by RNase E inactivating the sRNA. The homologous sRNA GlmY activates glmS indirectly. When present at high levels, GlmY sequesters RapZ by an RNA mimicry mechanism suppressing cleavage of GlmZ. The interplay of both sRNAs is believed to adjust GlmS synthesis to the needs of the cell, i.e., to achieve GlcN6P homeostasis. Bacilysin (tetaine) and Nva-FMDP are dipeptide antibiotics that impair cell envelope synthesis by inhibition of enzyme GlmS through covalent modification. However, although taken up efficiently, these antibiotics are less active against E. coli for reasons unknown so far. Here we show that the GlmY/GlmZ circuit provides resistance. Inhibition of GlmS causes GlcN6P deprivation leading to activation of GlmY and GlmZ, which in turn trigger glmS overexpression in a dosage-dependent manner. Mutation of glmY or glmZ disables this response and renders the bacteria highly susceptible to GlmS inhibitors. Thus, E. coli compensates inhibition of GlmS by increasing its synthesis through the GlmY/GlmZ pathway. This mechanism is also operative in Salmonella indicating that it is conserved in Enterobacteriaceae possessing these sRNAs. As GlmY apparently responds to GlcN6P, co-application of a non-metabolizable GlcN6P analog may prevent activation of the sRNAs and thereby increase the bactericidal activity of GlmS inhibitors against wild-type bacteria. Initial experiments using glucosamine-6-sulfate support this possibility. Thus, GlcN6P analogs might be considered for co-application with GlmS inhibitors in combined therapy to treat infections caused by pathogenic Enterobacteriaceae.

17.
Nucleic Acids Res ; 44(2): 824-37, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26531825

RESUMO

In E. coli, small RNA GlmZ activates the glmS mRNA by base-pairing in an Hfq dependent manner. When not required, GlmZ is bound by adaptor protein RapZ and recruited to RNase E, which cleaves GlmZ in its base-pairing sequence. Small RNA GlmY counteracts cleavage of GlmZ by sequestration of RapZ. Although both sRNAs are highly homologous, only GlmZ specifically binds Hfq and undergoes cleavage by RNase E. We used domain swapping to identify the responsible modules. Two elements, the 3' terminal oligo(U) stretch and the base-pairing region enable GlmZ to interact with Hfq. Accordingly, Hfq inhibits cleavage of GlmZ, directing it to base-pairing. Intriguingly, the central stem loop of GlmZ is decisive for cleavage, whereas the sequence comprising the actual cleavage site is dispensable. Assisted by RapZ, RNase E cleaves any RNA fused to the 3' end of this module. These results suggest a novel mode for RNase E recognition, in which one of the required handholds in the substrate is replaced by an RNA binding protein. This device can generate RNAs of interest in their 5' monophosphorylated form on demand. As these species are rapidly degraded, this tool allows to regulate gene expression post-transcriptionally by modulation of RapZ levels.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Endorribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Pareamento de Bases , Sítios de Ligação , Endorribonucleases/genética , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
18.
J Mol Microbiol Biotechnol ; 25(2-3): 168-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26159077

RESUMO

Many Proteobacteria possess the regulatory nitrogen-related phosphotransferase system (PTS(Ntr)), which operates in parallel to the transport PTS. PTS(Ntr) is composed of the proteins EI(Ntr) and NPr and the final phosphate acceptor EIIA(Ntr). Both PTSs can exchange phosphoryl groups among each other. Proteins governing K(+) uptake represent a major target of PTS(Ntr) in Escherichia coli. Nonphosphorylated EIIA(Ntr) binds and stimulates the K(+) sensor KdpD, which activates expression of the kdpFABC operon encoding a K(+) transporter. Here we show that this regulation also operates in an ilvG(+) strain ruling out previous concern about interference with a nonfunctional ilvG allele present in many strains. Furthermore, we analyzed phosphorylation of EIIA(Ntr). In wild-type cells EIIA(Ntr) is predominantly phosphorylated, regardless of the growth stage and the utilized carbon source. However, cross-phosphorylation of EIIA(Ntr) by the transport PTS becomes apparent in the absence of EI(Ntr): EIIA(Ntr) is predominantly nonphosphorylated when cells grow on a PTS sugar and phosphorylated when a non-PTS carbohydrate is utilized. These differences in phosphorylation are transduced into corresponding kdpFABC transcription levels. Thus, the transport PTS may affect phosphorylation of EIIA(Ntr) and accordingly modulate processes controlled by EIIA(Ntr). Our data suggest that this cross-talk becomes most relevant under conditions that would inhibit activity of EI(Ntr).


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Nitrogênio/metabolismo , Óperon , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosfotransferases/metabolismo , Potássio/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Fosforilação , Fosfotransferases/genética
19.
Mol Microbiol ; 92(4): 641-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24707963

RESUMO

Bacteria use intricately interconnected mechanisms acting at the transcriptional and post-transcriptional level to adjust gene expression to their needs. An intriguing example found in the chitosugar utilization systems of Escherichia coli and Salmonella is uncovered in a study by Plumbridge and colleagues. Three transcription factors (TFs), a small regulatory RNA (sRNA) and a sRNA trap cooperate to set thresholds and dynamics in regulation of chitosugar utilization. Specifically, under inducing conditions a decoy site on the polycistronic chitobiose (chbBCARFG) mRNA sequesters sRNA ChiX, which represses synthesis of the separately encoded chitoporin ChiP. Base-pairing of ChiX with its decoy has no role for the chb genes themselves when the mRNA is in excess. In the absence of substrate, however, this base-pairing tightly represses chbC encoding a subunit of the chitosugar transporter. Thus, one and the same sRNA/mRNA interaction serves different regulatory functions under different environmental conditions. The employment of RNA decoys to control the activities of post-transcriptional regulators themselves is an increasingly recognized mechanism in gene regulation. Another observation in the current study highlights the possibility that decoy sites might even exist on the DNA controlling the availability of TFs for their target promoters.


Assuntos
Quitina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Salmonella/genética , Salmonella/metabolismo
20.
RNA Biol ; 11(5): 433-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667238

RESUMO

In Escherichia coli, small RNAs GlmY and GlmZ feedback control synthesis of glucosamine-6-phosphate (GlcN6P) synthase GlmS, a key enzyme required for synthesis of the cell envelope. Both small RNAs are highly similar, but only GlmZ is able to activate the glmS mRNA by base-pairing. Abundance of GlmZ is controlled at the level of decay by RNase adaptor protein RapZ. RapZ binds and targets GlmZ to degradation by RNase E via protein-protein interaction. GlmY activates glmS indirectly by protecting GlmZ from degradation. Upon GlcN6P depletion, GlmY accumulates and sequesters RapZ in an RNA mimicry mechanism, thus acting as an anti-adaptor. As a result, this regulatory circuit adjusts synthesis of GlmS to the level of its enzymatic product, thereby mediating GlcN6P homeostasis. The interplay of RNase adaptor proteins and anti-adaptors provides an elegant means how globally acting RNases can be re-programmed to cleave a specific transcript in response to a cognate stimulus.


Assuntos
Parede Celular/genética , Mimetismo Molecular , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Parede Celular/metabolismo , Endorribonucleases/metabolismo , Ativação Enzimática , Regulação Bacteriana da Expressão Gênica , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Glucose-6-Fosfato/análogos & derivados , Glucose-6-Fosfato/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Interações Hospedeiro-Patógeno , Óperon/genética , Poliadenilação , Regiões Promotoras Genéticas , Ligação Proteica , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo , Ribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA