Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2895, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001874

RESUMO

Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particularly attractive conditions for the generation and acceleration of high-quality beams. However, this scheme relies on kilometer-scale accelerators. Here, we report on the demonstration of a millimeter-scale plasma accelerator powered by laser-accelerated electron beams. We showcase the acceleration of electron beams to 128 MeV, consistent with simulations exhibiting accelerating gradients exceeding 100 GV m-1. This miniaturized accelerator is further explored by employing a controlled pair of drive and witness electron bunches, where a fraction of the driver energy is transferred to the accelerated witness through the plasma. Such a hybrid approach allows fundamental studies of beam-driven plasma accelerator concepts at widely accessible high-power laser facilities. It is anticipated to provide compact sources of energetic high-brightness electron beams for quality-demanding applications such as free-electron lasers.

2.
Phys Rev E ; 101(2-1): 023209, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168651

RESUMO

Laser wakefield acceleration relies on the excitation of a plasma wave due to the ponderomotive force of an intense laser pulse. However, plasma wave trains in the wake of the laser have scarcely been studied directly in experiments. Here we use few-cycle shadowgraphy in conjunction with interferometry to quantify plasma waves excited by the laser within the density range of GeV-scale accelerators, i.e., a few 10^{18}cm^{-3}. While analytical models suggest a clear dependency between the nonlinear plasma wavelength and the peak potential a_{0}, our study shows that the analytical models are only accurate for driver strength a_{0}≲1. Experimental data and systematic particle-in-cell simulations reveal that nonlinear lengthening of the plasma wave train depends not solely on the laser peak intensity but also on the waist of the focal spot.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA