Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Drug Dev ; 13(3): 297-306, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38176912

RESUMO

Tacrolimus is metabolized by cytochrome P450 3A (CYP3A) and is susceptible to interactions with the CYP3A and P-glycoprotein inducer St. John's Wort (SJW). CYP3A isozymes are predominantly expressed in the small intestine and liver. Prolonged-release tacrolimus (PR-Tac) is largely absorbed in distal intestinal segments and is less susceptible to CYP3A inhibition. The effect of induction by SJW is unknown. In this randomized, crossover trial, 18 healthy volunteers received single oral tacrolimus doses (immediate-release [IR]-Tac or PR-Tac, 5 mg each) alone and during induction by SJW. Concentrations were quantified using ultra-high performance liquid chromatography coupled with tandem mass spectrometry and non-compartmental pharmacokinetics were evaluated. SJW decreased IR-Tac exposure (area under the concentration-time curve) to 73% (95% confidence interval 60%-88%) and maximum concentration (Cmax ) to 61% (52%-73%), and PR-Tac exposure to 67% (55%-81%) and Cmax to 69% (58%-82%), with no statistical difference between the 2 formulations. The extent of interaction appeared to be less pronounced in volunteers with higher baseline CYP3A4 activity and in CYP3A5 expressors. In contrast to CYP3A inhibition, CYP3A induction by SJW showed a similar extent of interaction with both tacrolimus formulations. A higher metabolic baseline capacity appeared to attenuate the extent of induction by SJW.


Assuntos
Hypericum , Tacrolimo , Humanos , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Hypericum/química , Hypericum/metabolismo , Extratos Vegetais , Tacrolimo/farmacocinética , Estudos Cross-Over
2.
Eur J Drug Metab Pharmacokinet ; 49(1): 101-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38114885

RESUMO

BACKGROUND AND OBJECTIVE: Although polypharmacy is a particular challenge in daily rheumatological practice, clinical research on the effects of hydroxychloroquine (HCQ), a commonly used drug for patients with rheumatic diseases, is sparse on cytochrome P450 (CYP)-mediated metabolism. We have shown that pre-treatment with pantoprazole does not alter HCQ absorption in healthy volunteers. In this paper, we report the effects of a single 400 mg dose of HCQ on specific CYP3A and CYP2D6 substrates in healthy volunteers. METHODS: In the trial, participants were randomized into two groups (HCQ plus a 9-day course of pantoprazole, or HCQ only). As a secondary endpoint, the effects of a single oral dose of HCQ on the exposure of the oral microdosed CYP3A probe drug midazolam (30 µg) and the oral microdosed CYP2D6 probe drug yohimbine (50 µg) were studied in 23 healthy volunteers (EudraCT no. 2020-001470-30, registered 31 March 2020). RESULTS: The exposure of the probe drugs after intake of HCQ compared with baseline values was quantified by the partial area under the plasma concentration-time curve 0-6 h after administration (AUC0-6 h) for yohimbine and the partial AUC2-4 h for midazolam. Under HCQ, yohimbine AUC0-6 h was unchanged, independent of CYP2D6 genotypes and pantoprazole exposure. Midazolam AUC2-4 h was 25% higher on the day of HCQ administration than at baseline (p = 0.0007). This significant increase was driven by the pantoprazole subgroup, which showed a 46% elevation of midazolam AUC2-4 h as compared with baseline (p < 0.0001). The ratio of midazolam to 1-OH-midazolam partial AUC2-4 h significantly increased from 3.03 ± 1.59 (baseline) to 3.60 ± 1.56 (HCQ) in the pantoprazole group (p = 0.0026). CONCLUSION: In conclusion, we observed an increased midazolam exposure most likely related to pantoprazole.


Assuntos
Citocromo P-450 CYP3A , Hidroxicloroquina , Humanos , Área Sob a Curva , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Voluntários Saudáveis , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Midazolam , Pantoprazol/farmacologia , Preparações Farmacêuticas , Ioimbina
3.
Artigo em Inglês | MEDLINE | ID: mdl-38112932

RESUMO

PURPOSE: Early antiviral treatment with nirmatrelvir/ritonavir is recommended for SARS-CoV-2-infected patients at high risk for severe courses. Such patients are usually chronically ill and susceptible to adverse drug interactions caused by ritonavir. We investigated the interactions of short-term low-dose ritonavir therapy with atorvastatin and rosuvastatin, two statins commonly used in this population. METHOD: We assessed exposure changes (area under the concentration-time curve (AUC∞) and maximum concentration (Cmax)) of a single dose of 10 mg atorvastatin and 10 mg rosuvastatin before and on the fifth day of ritonavir treatment (2 × 100 mg/day) in healthy volunteers and developed a semi-mechanistic pharmacokinetic model to estimate dose adjustment of atorvastatin during ritonavir treatment. RESULTS: By the fifth day of ritonavir treatment, the AUC∞ of atorvastatin increased 4.76-fold and Cmax 3.78-fold, and concurrently, the concentration of atorvastatin metabolites decreased to values below the lower limit of quantification. Pharmacokinetic modelling indicated that a stepwise reduction in atorvastatin dose during ritonavir treatment with a stepwise increase up to 4 days after ritonavir discontinuation can keep atorvastatin exposure within safe and effective margins. Rosuvastatin pharmacokinetics were only mildly modified; ritonavir significantly increased the Cmax 1.94-fold, while AUC∞ was unchanged. CONCLUSION: Atorvastatin doses should likely be adjusted during nirmatrelvir/ritonavir treatment. For patients on a 20-mg dose, we recommend half of the original dose. In patients taking 40 mg or more, a quarter of the dose should be taken until 2 days after discontinuation of nirmatrelvir/ritonavir. Patients receiving rosuvastatin do not need to change their treatment regimen. TRIAL REGISTRATION: EudraCT number: 2021-006634-39. DRKS00027838.

4.
Clin Pharmacol Drug Dev ; 11(2): 285-290, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34268908

RESUMO

Hydroxychloroquine as a weak basic compound with two amines is strongly enriched in cell compartments with low pH, suggesting that modification of gastric pH by coadministered proton pump inhibitors might reduce its solubility and absorption and thus its efficacy in patients. We addressed this question in a single-center, open-label, randomized, parallel drug-drug interaction trial in healthy adults (EudraCT No. 2020-001470-30). All participants received a single oral dose of 400-mg hydroxychloroquine, and one group additionally received 40 mg of pantoprazole once daily for 9 days dosed to steady state. Whole-blood samples were collected for 72 hours, and hydroxychloroquine was quantified by liquid chromatography-tandem mass spectrometry. Primary endpoints were whole-blood hydroxychloroquine areas under the concentration-time curve from 0 to 72 hours (AUC0-72h ) and peak concentrations (Cmax ). Unpaired 2-sided t-tests of the log transformed pharmacokinetic parameters were performed to compare both groups. Twenty-four participants (12 per group) were included. Hydroxychloroquine AUC0-72h and Cmax did not differ between groups without and with pantoprazole (arithmetic mean; AUC0-72h , 7649 ng/ml • h, and 8429 ng/ml • h, P = .50; Cmax , 448 ng/mL and 451.5 ng/mL, P = .96, respectively). Pantoprazole did not alter hydroxychloroquine absorption, indicating that proton pump inhibitors do not affect its bioavailability.


Assuntos
Inibidores da Bomba de Prótons , Adulto , Disponibilidade Biológica , Cromatografia Líquida , Interações Medicamentosas , Humanos , Pantoprazol/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA