Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 110: 107033, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39255592

RESUMO

Sonoprocessing (US), as one of the most well-known and widely used green processing techniques, has tremendous benefits to be used in the food industry. The urgent call for global sustainable food production encourages the usage of such techniques more often and effectively. Using ultrasound as a hurdle technology synergistically with other green methods is crucial to improving the efficiency of the protein shift as well as the number of plant-based analog foods (PBAFs) against conventional products. It was revealed that the US has a significant impact when used as an assistant tool with other green technologies rather than being used alone. It increases the protein extraction efficiencies from plant biomasses, improves the techno-functional properties of food compounds, and makes them more applicable for industrial-scale alternative food production in the circular economy. The US aligns well with the objectives outlined in the UN's Sustainable Development Goals (SDGs), and Planetary Boundaries (PBs) framework, demonstrating promising outcomes in life cycle assessment. However, several challenges such as uncontrolled complex matrix effect, free radical formation, uncontrolled microbial growth/germination or off-flavor formation, removal of aromatic compounds, and Maillard reaction, are revealed in an increased number of studies, all of which need to be considered. In addition to a variety of advantages, this review also discusses the drawbacks and limitations of US focusing on PBAF production.


Assuntos
Desenvolvimento Sustentável , Plantas/química , Química Verde/métodos , Manipulação de Alimentos/métodos , Objetivos , Qualidade dos Alimentos
2.
Artigo em Inglês | MEDLINE | ID: mdl-39212736

RESUMO

Hydroxycinnamic acids (HCAs) are plant compounds with anticancer potential due to their antioxidant, anti-inflammatory, apoptosis-inducing, and proliferation-inhibiting effects. This review aims to consolidate and analyze current knowledge on the anticancer effects of HCAs, exploring their mechanisms of action, bioavailability challenges, and potential therapeutic applications. A comprehensive literature search on PubMed/MedLine, Scopus, Web of Science, and Google Scholar focused on the anticancer properties, mechanisms, bioavailability, and safety profiles of HCAs. Studies have shown that HCAs, such as caffeic acid, ferulic acid, and sinapic acid, inhibit the growth of cancer cells in vitro and in vivo and sensitize cancer cells to chemotherapy and radiation therapy. These effects are mediated by mechanisms including the inhibition of cell survival pathways, modulation of gene expression, and induction of oxidative stress and DNA damage. Additionally, several studies have demonstrated that HCAs exhibit selective toxicity, with a higher propensity to induce cell death in cancerous cells compared to normal cells. However, the toxicity profile of HCAs can vary depending on the specific compound, dosage, and experimental conditions. The anticancer properties of HCAs suggest potential applications in cancer prevention and treatment. However, it is essential to distinguish between their use as dietary supplements and therapeutic agents, as the dosage and formulation suitable for dietary supplements may be insufficient for therapeutic purposes. The regulatory and practical implications of using HCAs in these different contexts require careful consideration. Further research is needed to determine appropriate dosages, formulations, long-term effects, and regulatory frameworks for HCAs as both dietary supplements and therapeutic agents.

3.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504491

RESUMO

The use of protein-based films in food preservation has been investigated as an alternative to synthetic plastics in recent years. Being biodegradable, edible, natural, and upcycling from food waste/by-products are the benefits of protein-based edible films. Their use ensures food safety as an alternative to synthetic plastics, and their film-forming properties can be improved with the addition of bioactive compounds. This review summarizes the studies on the changes in certain quality parameters of plant protein-based films, including mechanical, physicochemical, or morphological properties with the use of different forms of phenolic additives (pure phenolics, phenolic extracts, essential oils) and their application in foods during storage. Phenolics affect protein film matrix formation by acting as plasticizers or cross-linking agents and confer additional health benefits by providing bioactive properties to protein films. On the other hand, the effects were more pronounced with the use of their oxidized forms or higher concentrations. Consequently, phenolic additives have great potential to improve protein films, but further studies are still required to investigate the effects and mechanisms of phenolic addition to the protein-based films.

4.
Food Res Int ; 173(Pt 1): 113269, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803589

RESUMO

This review summarizes the literature on the interaction between plant-based proteins and phenolics. The structure of the phenolic compound, the plant source of proteins, matrix properties (pH, temperature), and interaction mechanism (covalent and non-covalent) change the secondary structure, ζ-potential, surface hydrophobicity, and thermal stability of proteins as well as their functional properties including solubility, foaming, and emulsifying properties. Studies indicated that the foaming and emulsifying properties may be affected either positively or negatively according to the type and concentration of the phenolic compound. Protein digestibility, on the other hand, differs depending on (1) the phenolic concentration, (2) whether the food matrix is ​​solid or liquid, and (3) the state of the food-whether it is heat-treated or prepared as a mixture without heat treatment in the presence of phenolics. This review comprehensively covers the effects of protein-phenolic interactions on the structure and properties of proteins, including functional properties and digestibility both in model systems and real food matrix.


Assuntos
Digestão , Proteínas de Plantas , Proteínas de Plantas/química , Concentração de Íons de Hidrogênio , Solubilidade , Interações Hidrofóbicas e Hidrofílicas
5.
Adv Food Nutr Res ; 107: 1-39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37898537

RESUMO

Fruit and vegetable processing by-products and wastes are of great importance due to their high production volumes and their composition containing different functional compounds. Particularly, apple, grape, citrus, and tomato pomaces, potato peel, olive mill wastewater, olive pomace and olive leaves are the main by-products that are produced during processing. Besides conventional techniques, ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction (sub-critical water extraction), supercritical fluid extraction, enzyme-assisted extraction, and fermentation are emerging tools for the recovery of target compounds. On the other hand, in the view of valorization, it is possible to use them in active packaging applications, as a source of bioactive compound (oil, phenolics, carotenoids), as functional ingredients and as biofertilizer and biogas sources. This chapter explains the production of fruit and vegetable processing by-products/wastes. Moreover, the valorization of functional compounds recovered from the fruit and vegetable by-products and wastes is evaluated in detail by emphasizing the type of the by-products/wastes, functional compounds obtained from these by-products/wastes, their extraction conditions and application areas.


Assuntos
Frutas , Verduras , Frutas/química , Fenóis/análise , Carotenoides
6.
Adv Food Nutr Res ; 107: 213-261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37898541

RESUMO

Due to the negative impacts of food loss and food waste on the environment, economy, and social contexts, it is a necessity to take action in order to reduce these wastes from post-harvest to distribution. In addition to waste reduction, bioactives obtained from by-products or wastes can be utilized by new end-users by considering the safety aspects. It has been reported that physical, biological, and chemical safety features of raw materials, instruments, environment, and processing methods should be assessed before and during valorization. It has also been indicated that meat by-products/wastes including collagen, gelatin, polysaccharides, proteins, amino acids, lipids, enzymes and chitosan; dairy by-products/wastes including whey products, buttermilk and ghee residue; fruit and vegetable by-products/wastes such as pomace, leaves, skins, seeds, stems, seed oils, gums, fiber, polyphenols, starch, cellulose, galactomannan, pectin; cereal by-products/wastes like vitamins, dietary fibers, fats, proteins, starch, husk, and trub have been utilized as animal feed, food supplements, edible coating, bio-based active packaging systems, emulsifiers, water binders, gelling, stabilizing, foaming or whipping agents. This chapter will explain the safety aspects of bioactives obtained from various by-products/wastes. Additionally, applications of bioactives obtained from by-products/wastes have been included in detail by emphasizing the source, form of bioactive compound as well as the effect of said bioactive compound.


Assuntos
Eliminação de Resíduos , Animais , Frutas/química , Suplementos Nutricionais/análise , Polifenóis/análise , Amido/análise
7.
Food Funct ; 14(8): 3538-3551, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37009695

RESUMO

This study aimed to evaluate the protein-phenolic interaction in functional crackers made of wheat/lentil flour with onion skin phenolics (onion skin powder: OSP, onion skin phenolic extract: OSE, or quercetin: Q) after in vitro gastrointestinal digestion. Phenolic/antioxidant recovery in crackers was lower with higher levels of phenolic addition. In vitro gastrointestinal digestion procedure was applied for crackers prepared/cooked with onion skin phenolics (functional crackers) or crackers consumed with onion skin phenolics (co-digestion). Functional crackers had similar nutritional attributes (p > 0.05), however they had lower L* values, and higher a* values. A higher concentration of OSP/OSE caused a decrease in the b* value while it was increased with the quercetin addition. Phenolic/antioxidant recovery in functional crackers was decreased by increasing the ratio of phenolic supplements. The amount of quercetin 7,4-diglucoside was lower than the theoretical value whereas the amount of quercetin was higher in functional crackers. The phenolic bioavailability index (BIP) of co-digested crackers was higher than that of functional crackers, whereas antioxidant bioavailability index (BIA) was mostly similar. Quercetin was only identified in functional wheat/lentil crackers with OSE. After digestion (1) TCA-precipitated peptides of the wheat crackers could not be identified, whereas that of co-digested lentil crackers was more abundant, (2) level of free amino groups of co-digested/functional crackers were lower than the control except for the co-digested sample of lentil cracker with quercetin.


Assuntos
Lens (Planta) , Quercetina , Antioxidantes/farmacologia , Cebolas , Triticum , Fenóis , Digestão
8.
Biomed Pharmacother ; 161: 114428, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841029

RESUMO

The potent relation between lycopene intake and reduced incidence of a variety of cancers has an increasing interest. This comprehensive review aims to highlight the in vivo and in vitro research evaluating the anticancer mechanisms of lycopene by underlining the experiment conditions. In addition to these, the general characterization of lycopene has been explained. A collection of relevant scientific pharmacological articles from the following databases PubMed/MedLine, Web of Science, Scopus, TRIP database, and Google Scholar on the mechanisms of anticancer molecular action and cellular effects of lycopene in various types of tumors was performed. The anticancer potential of lycopene has been described by various in vitro cells, animal studies, and some clinical trials. It has been revealed that the anticancer potential of lycopene is mainly due to its powerful singlet-oxygen quencher characteristics, simulation of detoxifying/antioxidant enzymes production, initiation of apoptosis, inhibition of cell proliferation and cell cycle progression as well as modulations of gap junctional communication, the growth factors, and signal transduction pathways. It has been highlighted that the anticancer properties of lycopene are primarily linked to factors including; dose, presence of drug delivery systems, type of cancer, tumor size, and treatment time.


Assuntos
Anticarcinógenos , Antineoplásicos , Neoplasias , Animais , Licopeno/farmacologia , Licopeno/uso terapêutico , Carotenoides/farmacologia , Carotenoides/uso terapêutico , Carotenoides/metabolismo , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Neoplasias/patologia
9.
ACS Omega ; 8(1): 1618-1631, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643436

RESUMO

Consumers' interest in functional foods has significantly increased in the past few years. Hazelnut meal, the main valuable byproduct of the hazelnut oil industry, is a rich source of proteins and bioactive peptides and thus has great potential to become a valuable functional ingredient. In this study, hazelnut protein hydrolysates obtained by a single or combined hydrolysis by Alcalase and Neutrase were mainly characterized for their physicochemical properties (SDS-PAGE, particle size distribution, Fourier-transform infrared (FTIR) spectroscopy, molecular weight distribution, etc.) and potential antiobesity effect (Free fatty acid (FFA) release inhibition), antioxidant activity (DPPH and ABTS methods), and emulsifying properties. The impact of a microfluidization pretreatment was also investigated. The combination of Alcalase with Neutrase permitted the highest degree of hydrolysis (DH; 15.57 ± 0.0%) of hazelnut protein isolate, which resulted in hydrolysates with the highest amount of low-molecular-weight peptides, as indicated by size exclusion chromatography (SEC) and SDS-PAGE. There was a positive correlation between the DH and the inhibition of FFA release by pancreatic lipase (PL), with a significant positive effect of microfluidization when followed by Alcalase hydrolysis. Microfluidization enhanced the emulsifying activity index (EAI) of protein isolates and hydrolysates. Low hydrolysis by Neutrase had the best effect on the EAI (84.32 ± 1.43 (NH) and 88.04 ± 2.22 m2/g (MFNH)), while a negative correlation between the emulsifying stability index (ESI) and the DH was observed. Again, the combined Alcalase-Neutrase hydrolysates displayed the highest radical scavenging activities (96.63 ± 1.06% DPPH and 98.31 ± 0.46% ABTS). FTIR results showed that the application of microfluidization caused the unfolding of the protein structure. The individual or combined application of the Alcalase and Neutrase enzymes caused a switch from the ß-sheet organization of the proteins to α-helix structures. In conclusion, hazelnut meal may be a good source of bioactive and functional peptides. The control of its enzymatic hydrolysis, together with an appropriate pretreatment such as microfluidization, may be crucial to achieve the best suitable activity.

10.
Food Chem ; 372: 130892, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34607046

RESUMO

The effect of protein-phenolic interactions on the functional properties of lentil protein and in vitro gastrointestinal digestibility in different systems (extract solution, protein-phenolic solution, and emulsion) was studied. The presence of phenolic compounds negatively affected the foaming and emulsion properties of lentil protein. During in vitro gastrointestinal digestion, total phenolic content (TPC) and antioxidant capacity of the samples were decreased with the presence of lentil protein at the initial phase, however, they were found to be the highest in emulsions at the intestinal phase. The amount of protocatechuic acid and phenolic acid derivative was increased at the intestinal phase, while that of other phenolic compounds was decreased. Quercetin was not detected at the intestinal phase in all systems, while its glycoside derivatives were determined, which were the highest in emulsions. Anthocyanins were also the highest in extract solution among all systems. Protein-phenolic interactions had a significant effect on functional properties of lentil proteins, and bioaccessibility or antioxidant capacity of phenolic compounds.


Assuntos
Lens (Planta) , Antocianinas , Antioxidantes , Digestão , Cebolas , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA