Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(20): 13991-14010, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37816245

RESUMO

The development of cannabinoid receptor type 2 (CB2R) PET radioligands has been intensively explored due to the pronounced CB2R upregulation under various pathological conditions. Herein, we report on the synthesis of a series of CB2R affine fluorinated indole-2-carboxamide ligands. Compound RM365 was selected for PET radiotracer development due to its high CB2R affinity (Ki = 2.1 nM) and selectivity over CB1R (factor > 300). Preliminary in vitro evaluation of [18F]RM365 indicated species differences in the binding to CB2R (KD of 2.32 nM for the hCB2R vs KD > 10,000 nM for the rCB2R). Metabolism studies in mice revealed a high in vivo stability of [18F]RM365. PET imaging in a rat model of local hCB2R(D80N) overexpression in the brain demonstrates the ability of [18F]RM365 to reach and selectively label the hCB2R(D80N) with a high signal-to-background ratio. Thus, [18F]RM365 is a very promising PET radioligand for the imaging of upregulated hCB2R expression under pathological conditions.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Humanos , Ratos , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Relação Estrutura-Atividade , Tomografia por Emissão de Pósitrons/métodos , Receptores de Canabinoides/metabolismo , Receptor CB2 de Canabinoide/metabolismo
2.
J Med Chem ; 66(7): 5242-5260, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36944112

RESUMO

The development of cannabinoid receptor type 2 (CB2R) radioligands for positron emission tomography (PET) imaging was intensively explored. To overcome the low metabolic stability and simultaneously increase the binding affinity of known CB2R radioligands, a carborane moiety was used as a bioisostere. Here we report the synthesis and characterization of carborane-based 1,8-naphthyridinones and thiazoles as novel CB2R ligands. All tested compounds showed low nanomolar CB2R affinity, with (Z)-N-[3-(4-fluorobutyl)-4,5-dimethylthiazole-2(3H)-ylidene]-(1,7-dicarba-closo-dodecaboranyl)-carboxamide (LUZ5) exhibiting the highest affinity (0.8 nM). Compound [18F]LUZ5-d8 was obtained with an automated radiosynthesizer in high radiochemical yield and purity. In vivo evaluation revealed the improved metabolic stability of [18F]LUZ5-d8 compared to that of [18F]JHU94620. PET experiments in rats revealed high uptake in spleen and low uptake in brain. Thus, the introduction of a carborane moiety is an appropriate tool for modifying literature-known CB2R ligands and gaining access to a new class of high-affinity CB2R ligands, while the in vivo pharmacology still needs to be addressed.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Ratos , Animais , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ligação Proteica , Receptores de Canabinoides/metabolismo
3.
J Med Chem ; 65(13): 9034-9049, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35771668

RESUMO

The cannabinoid receptor type 2 (CB2R) is an attractive target for the diagnosis and therapy of neurodegenerative diseases and cancer. In this study, we aimed at the development of a novel 18F-labeled radioligand starting from the structure of the known naphthyrid-2-one CB2R ligands. Compound 28 (LU13) was identified with the highest binding affinity and selectivity versus CB1R (CB2RKi = 0.6 nM; CB1RKi/CB2RKi > 1000) and was selected for radiolabeling with fluorine-18 and biological characterization. The new radioligand [18F]LU13 showed high CB2R affinity in vitro as well as high metabolic stability in vivo. PET imaging with [18F]LU13 in a rat model of vector-based/-related hCB2R overexpression in the striatum revealed a high signal-to-background ratio. Thus, [18F]LU13 is a novel and highly promising PET radioligand for the imaging of upregulated CB2R expression under pathological conditions in the brain.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Flúor , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Ratos , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo
4.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35631343

RESUMO

The cerebral expression of the A2A adenosine receptor (A2AAR) is altered in neurodegenerative diseases such as Parkinson's (PD) and Huntington's (HD) diseases, making these receptors an attractive diagnostic and therapeutic target. We aimed to further investigate the pharmacokinetic properties in the brain of our recently developed A2AAR-specific antagonist radiotracer [18F]FLUDA. For this purpose, we retrospectively analysed dynamic PET studies of healthy mice and rotenone-treated mice, and conducted dynamic PET studies with healthy pigs. We performed analysis of mouse brain time-activity curves to calculate the mean residence time (MRT) by non-compartmental analysis, and the binding potential (BPND) of [18F]FLUDA using the simplified reference tissue model (SRTM). For the pig studies, we performed a Logan graphical analysis to calculate the radiotracer distribution volume (VT) at baseline and under blocking conditions with tozadenant. The MRT of [18F]FLUDA in the striatum of mice was decreased by 30% after treatment with the A2AAR antagonist istradefylline. Mouse results showed the highest BPND (3.9 to 5.9) in the striatum. SRTM analysis showed a 20% lower A2AAR availability in the rotenone-treated mice compared to the control-aged group. Tozadenant treatment significantly decreased the VT (14.6 vs. 8.5 mL · g-1) and BPND values (1.3 vs. 0.3) in pig striatum. This study confirms the target specificity and a high BPND of [18F]FLUDA in the striatum. We conclude that [18F]FLUDA is a suitable tool for the non-invasive quantitation of altered A2AAR expression in neurodegenerative diseases such as PD and HD, by PET.

5.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35337122

RESUMO

The degree of acetylation of lysine residues on histones influences the accessibility of DNA and, furthermore, the gene expression. Histone deacetylases (HDACs) are overexpressed in various tumour diseases, resulting in the interest in HDAC inhibitors for cancer therapy. The aim of this work is the development of a novel 18F-labelled HDAC1/2-specific inhibitor with a benzamide-based zinc-binding group to visualize these enzymes in brain tumours by positron emission tomography (PET). BA3, exhibiting high inhibitory potency for HDAC1 (IC50 = 4.8 nM) and HDAC2 (IC50 = 39.9 nM), and specificity towards HDAC3 and HDAC6 (specificity ratios >230 and >2080, respectively), was selected for radiofluorination. The two-step one-pot radiosynthesis of [18F]BA3 was performed in a TRACERlab FX2 N radiosynthesizer by a nucleophilic aliphatic substitution reaction. The automated radiosynthesis of [18F]BA3 resulted in a radiochemical yield of 1%, a radiochemical purity of >96% and a molar activity between 21 and 51 GBq/µmol (n = 5, EOS). For the characterization of BA3, in vitro and in vivo experiments were carried out. The results of these pharmacological and pharmacokinetic studies indicate a suitable inhibitory potency of BA3, whereas the applicability for non-invasive imaging of HDAC1/2 by PET requires further optimization of the properties of this compound.

6.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162950

RESUMO

A2A adenosine receptors (A2A-AR) have a cardio-protective function upon ischemia and reperfusion, but on the other hand, their stimulation could lead to arrhythmias. Our aim was to investigate the potential use of the PET radiotracer [18F]FLUDA to non-invasively determine the A2A-AR availability for diagnosis of the A2AR status. Therefore, we compared mice with cardiomyocyte-specific overexpression of the human A2A-AR (A2A-AR TG) with the respective wild type (WT). We determined: (1) the functional impact of the selective A2AR ligand FLUDA on the contractile function of atrial mouse samples, (2) the binding parameters (Bmax and KD) of [18F]FLUDA on mouse and human atrial tissue samples by autoradiographic studies, and (3) investigated the in vivo uptake of the radiotracer by dynamic PET imaging in A2A-AR TG and WT. After A2A-AR stimulation by the A2A-AR agonist CGS 21680 in isolated atrial preparations, antagonistic effects of FLUDA were found in A2A-AR-TG animals but not in WT. Radiolabelled [18F]FLUDA exhibited a KD of 5.9 ± 1.6 nM and a Bmax of 455 ± 78 fmol/mg protein in cardiac samples of A2A-AR TG, whereas in WT, as well as in human atrial preparations, only low specific binding was found. Dynamic PET studies revealed a significantly higher initial uptake of [18F]FLUDA into the myocardium of A2A-AR TG compared to WT. The hA2A-AR-specific binding of [18F]FLUDA in vivo was verified by pre-administration of the highly affine A2AAR-specific antagonist istradefylline. Conclusion: [18F]FLUDA is a promising PET probe for the non-invasive assessment of the A2A-AR as a marker for pathologies linked to an increased A2A-AR density in the heart, as shown in patients with heart failure.


Assuntos
Coração/diagnóstico por imagem , Miocárdio/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptor A2A de Adenosina/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Radioisótopos de Flúor/química , Coração/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Fenetilaminas/farmacologia , Purinas/farmacologia , Receptor A2A de Adenosina/metabolismo , Vidarabina/administração & dosagem , Vidarabina/análogos & derivados , Vidarabina/química
7.
Drug Deliv Transl Res ; 12(1): 257-266, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33543398

RESUMO

The effective delivery of drugs to the inner ear is still an unmet medical need. Local controlled drug delivery to this sensory organ is challenging due to its location in the petrous bone, small volume, tight barriers, and high vulnerability. Local intracochlear delivery of drugs would overcome the limitations of intratympanic (extracochlear) and systemic drug application. The requirements for such a delivery system include small size, appropriate flexibility, and biodegradability. We have developed biodegradable PLGA-based implants for controlled intracochlear drug release that can also be used in combination with cochlear implants (CIs), which are implantable neurosensory prosthesis for hearing rehabilitation. The drug carrier system was tested for implantation in the human inner ear in 11 human temporal bones. In five of the temporal bones, CI arrays from different manufacturers were implanted before insertion of the biodegradable PLGA implants. The drug carrier system and CI arrays were implanted into the scala tympani through the round window. Implanted temporal bones were evaluated by ultra-high-resolution computed tomography (µ-CT) to illustrate the position of implanted electrode carriers and the drug carrier system. The µ-CT measurements revealed the feasibility of implanting the PLGA implants into the scala tympani of the human inner ear and co-administration of the biodegradable PLGA implant with a CI array.


Assuntos
Implante Coclear , Implantes Cocleares , Orelha Interna , Humanos , Preparações Farmacêuticas , Osso Temporal/diagnóstico por imagem , Osso Temporal/cirurgia
8.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360817

RESUMO

Cannabinoid receptors type 2 (CB2R) represent an attractive therapeutic target for neurodegenerative diseases and cancer. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor receptor density and/or occupancy during a CB2R-tailored therapy, we herein describe the radiosynthesis of cis-[18F]1-(4-fluorobutyl-N-((1s,4s)-4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide ([18F]LU14) starting from the corresponding mesylate precursor. The first biological evaluation revealed that [18F]LU14 is a highly affine CB2R radioligand with >80% intact tracer in the brain at 30 min p.i. Its further evaluation by PET in a well-established rat model of CB2R overexpression demonstrated its ability to selectively image the CB2R in the brain and its potential as a tracer to further investigate disease-related changes in CB2R expression.


Assuntos
Encéfalo/ultraestrutura , Radioisótopos de Flúor/farmacocinética , Naftiridinas , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Receptor CB2 de Canabinoide/química , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Naftiridinas/síntese química , Naftiridinas/química , Ligação Proteica , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley
9.
Bioorg Med Chem Lett ; 48: 128254, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34256118

RESUMO

Monoamine oxidases (MAOs) play a key role in the metabolism of major monoamine neurotransmitters. In particular, the upregulation of MAO-B in Parkinson's disease, Alzheimer's disease and cancer augmented the development of selective MAO-B inhibitors for diagnostic and therapeutic purposes, such as the anti-parkinsonian MAO-B irreversible binder l-deprenyl (Selegiline®). Herein we report on the synthesis of novel fluorinated indanone derivatives for PET imaging of MAO-B in the brain. Out of our series, the derivatives 6, 8, 9 and 13 are amongst the most affine and selective ligands for MAO-B reported so far. For the derivative 6-((3-fluorobenzyl)oxy)-2,3-dihydro-1H-inden-1-one (6) exhibiting an outstanding affinity (KiMAO-B = 6 nM), an automated copper-mediated radiofluorination starting from the pinacol boronic ester 17 is described. An in vitro screening in different species revealed a MAO-B region-specific accumulation of [18F]6 in rats and piglets in comparison to L-[3H]deprenyl. The pre-clinical in vivo assessment of [18F]6 in mice demonstrated the potential of indanones to readily cross the blood-brain barrier. Nonetheless, parallel in vivo metabolism studies indicated the presence of blood-brain barrier metabolites, thus arguing for further structural modifications. With the matching analytical profiles of the radiometabolite analysis from the in vitro liver microsome studies and the in vivo evaluation, the structure's elucidation of the blood-brain barrier penetrant radiometabolites is possible and will serve as basis for the development of new indanone derivatives suitable for the PET imaging of MAO-B.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Halogenação , Indanos , Macaca mulatta , Estrutura Molecular , Monoaminoxidase/análise , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Ratos , Relação Estrutura-Atividade , Suínos
10.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064122

RESUMO

The σ2 receptor (transmembrane protein 97), which is involved in cholesterol homeostasis, is of high relevance for neoplastic processes. The upregulated expression of σ2 receptors in cancer cells and tissue in combination with the antiproliferative potency of σ2 receptor ligands motivates the research in the field of σ2 receptors for the diagnosis and therapy of different types of cancer. Starting from the well described 2-(4-(1H-indol-1-yl)butyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline class of compounds, we synthesized a novel series of fluorinated derivatives bearing the F-atom at the aromatic indole/azaindole subunit. RM273 (2-[4-(6-fluoro-1H-pyrrolo[2,3-b]pyridin-1-yl)butyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline) was selected for labelling with 18F and evaluation regarding detection of σ2 receptors in the brain by positron emission tomography. Initial metabolism and biodistribution studies of [18F]RM273 in healthy mice revealed promising penetration of the radioligand into the brain. Preliminary in vitro autoradiography on brain cryosections of an orthotopic rat glioblastoma model proved the potential of the radioligand to detect the upregulation of σ2 receptors in glioblastoma cells compared to healthy brain tissue. The results indicate that the herein developed σ2 receptor ligand [18F]RM273 has potential to assess by non-invasive molecular imaging the correlation between the availability of σ2 receptors and properties of brain tumors such as tumor proliferation or resistance towards particular therapies.


Assuntos
Encéfalo/metabolismo , Radioisótopos de Flúor/química , Radioisótopos de Flúor/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Receptores sigma/metabolismo , Animais , Feminino , Humanos , Ligantes , Masculino , Camundongos , Neoplasias/metabolismo , Ratos , Ratos Endogâmicos F344 , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/metabolismo
11.
Front Neurol ; 12: 642604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841309

RESUMO

Parkinson's disease (PD) is known to involve the peripheral nervous system (PNS) and the enteric nervous system (ENS). Functional changes in PNS and ENS appear early in the course of the disease and are responsible for some of the non-motor symptoms observed in PD patients like constipation, that can precede the appearance of motor symptoms by years. Here we analyzed the effect of the pesticide rotenone, a mitochondrial Complex I inhibitor, on the function and neuronal composition of the ENS by measuring intestinal contractility in a tissue bath and by analyzing related protein expression. Our results show that rotenone changes the normal physiological response of the intestine to carbachol, dopamine and electric field stimulation (EFS). Changes in the reaction to EFS seem to be related to the reduction in the cholinergic input but also related to the noradrenergic input, as suggested by the non-adrenergic non-cholinergic (NANC) reaction to the EFS in rotenone-exposed mice. The magnitude and direction of these alterations varies between intestinal regions and exposure times and is associated with an early up-regulation of dopaminergic, cholinergic and adrenergic receptors and an irregular reduction in the amount of enteric neurons in rotenone-exposed mice. The early appearance of these alterations, that start occurring before the substantia nigra is affected in this mouse model, suggests that these alterations could be also observed in patients before the onset of motor symptoms and makes them ideal potential candidates to be used as radiological markers for the detection of Parkinson's disease in its early stages.

12.
Eur J Nucl Med Mol Imaging ; 48(9): 2727-2736, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33532910

RESUMO

PURPOSE: The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH. METHODS: [18F]FLUDA was synthesized by a two-step one-pot approach and evaluated in vitro by autoradiographic studies as well as in vivo by metabolism and dynamic PET/MRI studies in mice and piglets under baseline and blocking conditions. A single-dose toxicity study was performed in rats. RESULTS: [18F]FLUDA was obtained with a radiochemical yield of 19% and molar activities of 72-180 GBq/µmol. Autoradiography proved A2A receptor-specific accumulation of [18F]FLUDA in the striatum of a mouse and pig brain. In vivo evaluation in mice revealed improved stability of [18F]FLUDA compared to that of [18F]FESCH, resulting in the absence of brain-penetrant radiometabolites. Furthermore, the radiometabolites detected in piglets are expected to have a low tendency for brain penetration. PET/MRI studies confirmed high specific binding of [18F]FLUDA towards striatal A2A receptor with a maximum specific-to-non-specific binding ratio in mice of 8.3. The toxicity study revealed no adverse effects of FLUDA up to 30 µg/kg, ~ 4000-fold the dose applied in human PET studies using [18F]FLUDA. CONCLUSIONS: The new radiotracer [18F]FLUDA is suitable to detect the availability of the A2A receptor in the brain with high target specificity. It is regarded ready for human application.


Assuntos
Tomografia por Emissão de Pósitrons , Receptor A2A de Adenosina , Adenosina , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Flúor , Camundongos , Compostos Radiofarmacêuticos , Ratos , Receptor A2A de Adenosina/metabolismo , Suínos
13.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562048

RESUMO

The expression of monocarboxylate transporters (MCTs) is linked to pathophysiological changes in diseases, including cancer, such that MCTs could potentially serve as diagnostic markers or therapeutic targets. We recently developed [18F]FACH as a radiotracer for non-invasive molecular imaging of MCTs by positron emission tomography (PET). The aim of this study was to evaluate further the specificity, metabolic stability, and pharmacokinetics of [18F]FACH in healthy mice and piglets. We measured the [18F]FACH plasma protein binding fractions in mice and piglets and the specific binding in cryosections of murine kidney and lung. The biodistribution of [18F]FACH was evaluated by tissue sampling ex vivo and by dynamic PET/MRI in vivo, with and without pre-treatment by the MCT inhibitor α-CCA-Na or the reference compound, FACH-Na. Additionally, we performed compartmental modelling of the PET signal in kidney cortex and liver. Saturation binding studies in kidney cortex cryosections indicated a KD of 118 ± 12 nM and Bmax of 6.0 pmol/mg wet weight. The specificity of [18F]FACH uptake in the kidney cortex was confirmed in vivo by reductions in AUC0-60min after pre-treatment with α-CCA-Na in mice (-47%) and in piglets (-66%). [18F]FACH was metabolically stable in mouse, but polar radio-metabolites were present in plasma and tissues of piglets. The [18F]FACH binding potential (BPND) in the kidney cortex was approximately 1.3 in mice. The MCT1 specificity of [18F]FACH uptake was confirmed by displacement studies in 4T1 cells. [18F]FACH has suitable properties for the detection of the MCTs in kidney, and thus has potential as a molecular imaging tool for MCT-related pathologies, which should next be assessed in relevant disease models.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Radioisótopos de Flúor/química , Vesícula Biliar/metabolismo , Rim/metabolismo , Fígado/metabolismo , Camundongos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Ratos , Suínos
14.
Int J Pharm X ; 2: 100055, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32984812

RESUMO

Highly porous 3D-scaffolds, made from cut, electrospun PLA fibers, are relatively new and promising systems for controlled drug-delivery applications. Because knowledge concerning fundamental processes of drug delivery from those scaffolds is limited, we noninvasively characterized drug-loading and drug-release mechanisms of these polymer-fiber sponges (PFS). We screened simplified PFS-implantation scenarios with EPR and µCT to quantify and 3D-visualize the absorption of model-biofluids and an oil, a possible drug-loading liquid. Saturation of PFS (6 × 8 mm, h x d) is governed by the high hydrophobicity of the material and air-entrapment. It required up to 45 weeks for phosphate-buffered saline and 11 weeks for a more physiological, surface-active protein-solution, indicating the slow fluid-uptake of PFS as an effective mechanism to substantially prolong the release of a drug incorporated within the scaffold. Medium-chain triglycerides, as a good wetting liquid, saturated PFS within seconds, suggesting PFS potential to serve as carrier-vessels for immobilizing hydrophobic drug-solutions to define a liquid's 3D-interface. Oil-retention under mechanical stress was therefore investigated. 1H NMR permitted insights into PFS-oil interaction, confirming surface-relaxation and restricted diffusion; both did not influence drug release from oil-loaded PFS. Results facilitate better understanding of PFS and their potential use in drug delivery.

15.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366046

RESUMO

The adenosine A2B receptor has been proposed as a novel therapeutic target in cancer, as its expression is drastically elevated in several tumors and cancer cells. Noninvasive molecular imaging via positron emission tomography (PET) would allow the in vivo quantification of this receptor in pathological processes and most likely enable the identification and clinical monitoring of respective cancer therapies. On the basis of a bicyclic pyridopyrimidine-2,4-dione core structure, the new adenosine A2B receptor ligand 9 was synthesized, containing a 2-fluoropyridine moiety suitable for labeling with the short-lived PET radionuclide fluorine-18. Compound 9 showed a high binding affinity for the human A2B receptor (Ki(A2B) = 2.51 nM), along with high selectivities versus the A1, A2A, and A3 receptor subtypes. Therefore, it was radiofluorinated via nucleophilic aromatic substitution of the corresponding nitro precursor using [18F]F-/K2.2.2./K2CO3 in DMSO at 120 °C. Metabolic studies of [18F]9 in mice revealed about 60% of radiotracer intact in plasma at 30 minutes p.i. A preliminary PET study in healthy mice showed an overall biodistribution of [18F]9, corresponding to the known ubiquitous but low expression of the A2B receptor. Consequently, [18F]9 represents a novel PET radiotracer with high affinity and selectivity toward the adenosine A2B receptor and a suitable in vivo profile. Subsequent studies are envisaged to investigate the applicability of [18F]9 to detect alterations in the receptor density in certain cancer-related disease models.


Assuntos
Adenosina/química , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Receptor A2B de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/química , Animais , Feminino , Humanos , Camundongos , Estrutura Molecular
16.
Molecules ; 25(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423056

RESUMO

Monocarboxylate transporters 1-4 (MCT1-4) are involved in several metabolism-related diseases, especially cancer, providing the chance to be considered as relevant targets for diagnosis and therapy. [18F]FACH was recently developed and showed very promising preclinical results as a potential positron emission tomography (PET) radiotracer for imaging of MCTs. Given that [18F]FACH did not show high blood-brain barrier permeability, the current work is aimed to investigate whether more lipophilic analogs of FACH could improve brain uptake for imaging of gliomas, while retaining binding to MCTs. The 2-fluoropyridinyl-substituted analogs 1 and 2 were synthesized and their MCT1 inhibition was estimated by [14C]lactate uptake assay on rat brain endothelial-4 (RBE4) cells. While compounds 1 and 2 showed lower MCT1 inhibitory potencies than FACH (IC50 = 11 nM) by factors of 11 and 25, respectively, 1 (IC50 = 118 nM) could still be a suitable PET candidate. Therefore, 1 was selected for radiosynthesis of [18F]1 and subsequent biological evaluation for imaging of the MCT expression in mouse brain. Regarding lipophilicity, the experimental log D7.4 result for [18F]1 agrees pretty well with its predicted value. In vivo and in vitro studies revealed high uptake of the new radiotracer in kidney and other peripheral MCT-expressing organs together with significant reduction by using specific MCT1 inhibitor α-cyano-4-hydroxycinnamic acid. Despite a higher lipophilicity of [18F]1 compared to [18F]FACH, the in vivo brain uptake of [18F]1 was in a similar range, which is reflected by calculated BBB permeabilities as well through similar transport rates by MCTs on RBE4 cells. Further investigation is needed to clarify the MCT-mediated transport mechanism of these radiotracers in brain.


Assuntos
Encéfalo/diagnóstico por imagem , Transportadores de Ácidos Monocarboxílicos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Piridinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Simportadores/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular , Ácidos Cumáricos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Radioisótopos de Flúor , Ligantes , Camundongos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Simportadores/antagonistas & inibidores
17.
Mol Imaging Biol ; 20(3): 457-464, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29063303

RESUMO

PURPOSE: Determining the glomerular filtration rate (GFR) is essential for clinical medicine but also for pre-clinical animal studies. Functional imaging using positron emission tomography (PET) allows repetitive almost non-invasive measurements. The aim of the study was the development and evaluation of easily synthesizable PET tracers for GFR measurements in small animals. PROCEDURES: Diethylenetriaminepentaacetic acid (DTPA) and ethylenediaminetetraacetic acid (EDTA) were labeled with Ga-68. The binding to blood cells and plasma proteins was tested in vitro. The distribution of the tracers in rats was analyzed by PET imaging and ex vivo measurements. From the time-activity-curve of the blood compartment (heart) and the total tracer mass excreted by the kidney, the GFR was calculated. These values were compared directly with the inulin clearance in the same animals. RESULTS: Both tracers did not bind to blood cells. [68Ga]DPTA but not [68Ga]EDTA showed strong binding to plasma proteins. For this reason, [68Ga]DPTA stayed much longer in the blood and only 30 % of the injected dose was eliminated by the kidney within 60 min whereas the excretion of [68Ga]EDTA was 89 ± 1 %. The calculated GFR using [68Ga]EDTA was comparable to the measured inulin clearance in the same animal. Using [68Ga]-DPTA, the measurements led to values which were 80 % below the normal GFR. The results also revealed that definition of the volume of interest for the blood compartment affects the calculation and may lead to a slight overestimation of the GFR. CONCLUSIONS: [68Ga]EDTA is a suitable tracer for GFR calculation from PET imaging in small animals. It is easy to be labeled, and the results are in good accordance with the inulin clearance. [68Ga]DTPA led to a marked underestimation of GFR due to its strong binding to plasma proteins and is therefore not an appropriate tracer for GFR measurements.


Assuntos
Ácido Edético/química , Radioisótopos de Gálio/química , Taxa de Filtração Glomerular , Ácido Pentético/química , Tomografia por Emissão de Pósitrons , Animais , Proteínas Sanguíneas/metabolismo , Eritrócitos/metabolismo , Humanos , Inulina/metabolismo , Masculino , Ratos , Distribuição Tecidual
18.
Int J Nanomedicine ; 12: 5571-5584, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28831253

RESUMO

BACKGROUND: Polymeric nanoparticles allow to selectively transport chemotherapeutic drugs to the tumor tissue. These nanocarriers have to be taken up into the cells to release the drug. In addition, tumors often show pathological metabolic characteristics (hypoxia and acidosis) which might affect the polymer endocytosis. MATERIALS AND METHODS: Six different N-(2-hydroxypropyl)methacrylamide (HPMA)-based polymer structures (homopolymer as well as random and block copolymers with lauryl methacrylate containing hydrophobic side chains) varying in molecular weight and size were analyzed in two different tumor models. The cellular uptake of fluorescence-labeled polymers was measured under hypoxic (pO2 ≈1.5 mmHg) and acidic (pH 6.6) conditions. By using specific inhibitors, different endocytotic routes (macropinocytosis and clathrin-mediated, dynamin-dependent, cholesterol-dependent endocytosis) were analyzed separately. RESULTS: The current results revealed that the polymer uptake depends on the molecular structure, molecular weight and tumor line used. In AT1 cells, the uptake of random copolymer was five times stronger than the homopolymer, whereas in Walker-256 cells, the uptake of all polymers was much stronger, but this was independent of the molecular structure and size. Acidosis increased the uptake of random copolymer in AT1 cells but reduced the intracellular accumulation of homopolymer and block copolymer. Hypoxia reduced the uptake of all polymers in Walker-256 cells. Hydrophilic polymers (homopolymer and block copolymer) were taken up by all endocytotic routes studied, whereas the more lipophilic random copolymer seemed to be taken up preferentially by cholesterol- and dynamin-dependent endocytosis. CONCLUSION: The study indicates that numerous parameters of the polymer (structure, size) and of the tumor (perfusion, vascular permeability, pH, pO2) modulate drug delivery, which makes it difficult to select the appropriate polymer for the individual patient.


Assuntos
Acrilamidas/química , Endocitose/efeitos dos fármacos , Nanopartículas/química , Polímeros/farmacocinética , Acidose , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Peso Molecular , Nanopartículas/administração & dosagem , Polímeros/química , Ratos , Hipóxia Tumoral
19.
J Neurochem ; 135(5): 1019-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26442809

RESUMO

The bioactivity of neuropeptide Y (NPY) is either N-terminally modulated with respect to receptor selectivity by dipeptidyl peptidase 4 (DP4)-like enzymes or proteolytic degraded by neprilysin or meprins, thereby abrogating signal transduction. However, neither the subcellular nor the compartmental differentiation of these regulatory mechanisms is fully understood. Using mass spectrometry, selective inhibitors and histochemistry, studies across various cell types, body fluids, and tissues revealed that most frequently DP4-like enzymes, aminopeptidases P, secreted meprin-A (Mep-A), and cathepsin D (CTSD) rapidly hydrolyze NPY, depending on the cell type and tissue under study. Novel degradation of NPY by cathepsins B, D, L, G, S, and tissue kallikrein could also be identified. The expression of DP4, CTSD, and Mep-A at the median eminence indicates that the bioactivity of NPY is regulated by peptidases at the interphase between the periphery and the CNS. Detailed ex vivo studies on human sera and CSF samples recognized CTSD as the major NPY-cleaving enzyme in the CSF, whereas an additional C-terminal truncation by angiotensin-converting enzyme could be detected in serum. The latter finding hints to potential drug interaction between antidiabetic DP4 inhibitors and anti-hypertensive angiotensin-converting enzyme inhibitors, while it ablates suspected hypertensive side effects of only antidiabetic DP4-inhibitors application. The bioactivity of neuropeptide Y (NPY) is either N-terminally modulated with respect to receptor selectivity by dipeptidyl peptidase 4 (DP4)-like enzymes or proteolytic degraded by neprilysin or meprins, thereby abrogating signal transduction. However, neither the subcellular nor the compartmental differentiation of these regulatory mechanisms is fully understood. Using mass spectrometry, selective inhibitors and histochemistry, studies across various cell types, body fluids, and tissues revealed that most frequently DP4-like enzymes, aminopeptidases P, secreted meprin-A (Mep-A), and cathepsin D (CTSD) rapidly hydrolyze NPY, depending on the cell type and tissue under study. Novel degradation of NPY by cathepsins B, D, L, G, S, and tissue kallikrein could also be identified. The expression of DP4, CTSD, and Mep-A at the median eminence indicates that the bioactivity of NPY is regulated by peptidases at the interphase between the periphery and the CNS. Detailed ex vivo studies on human sera and CSF samples recognized CTSD as the major NPY-cleaving enzyme in the CSF, whereas an additional C-terminal truncation by angiotensin-converting enzyme could be detected in serum. The latter finding hints to potential drug interaction between antidiabetic DP4 inhibitors and anti-hypertensive angiotensin-converting enzyme inhibitors, while it ablates suspected hypertensive side effects of only antidiabetic DP4-inhibitors application.


Assuntos
Sistema Nervoso Central/citologia , Dipeptidil Peptidase 4/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Sistema Nervoso Periférico/citologia , Animais , Proteína C-Reativa/líquido cefalorraquidiano , Catepsina D/líquido cefalorraquidiano , Células Cultivadas , Dipeptidil Peptidase 4/genética , Interações Medicamentosas , Feminino , Humanos , Hidrólise/efeitos dos fármacos , Masculino , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Proteólise/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos
20.
Free Radic Biol Med ; 89: 741-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26459034

RESUMO

Electron paramagnetic resonance (EPR) oximetry is a technique which allows accurate and repeatable oxygen measurements. We encapsulated a highly oxygen sensitive particulate EPR spin probe into microparticles to improve its dispersibility and, hence, facilitate the administration. These biocompatible, non-toxic microspheres contained 5-10 % (w/w) spin probe and had an oxygen sensitivity of 0.60 ± 0.01 µT/mmHg. To evaluate the performance of the microparticles as oxygen sensors, they were co-implanted with syngeneic tumor cells in 2 different rat strains. Thus, tissue injury was avoided and the microparticles were distributed all over the tumor tissue. Dynamic changes of the intratumoral oxygen partial pressure during inhalation of 8 %, 21 %, or 100 % oxygen were monitored in vivo by EPR spectroscopy and quantified. Values were verified in vivo by invasive fluorometric measurements using Oxylite probes and ex vivo by pimonidazole adduct accumulation. There were no hints that the tumor physiology or tissue oxygenation had been altered by the microparticles. Hence, these microprobes offer great potential as oxygen sensors in preclinical research, not only for EPR spectroscopy but also for EPR imaging. For instance, the assessment of tissue oxygenation during therapeutic interventions might help understanding pathophysiological processes and lead to an individualized treatment planning or the use of formulations with hypoxia triggered release of active agents.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Microesferas , Neoplasias Experimentais/patologia , Oxigênio/análise , Porfirinas , Animais , Masculino , Microscopia de Fluorescência , Ratos , Ratos Wistar , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA