Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(7): 2991-3002, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33234029

RESUMO

The compounds (3-6) used in this study were re-synthesized in accordance with our previous study. The inhibitory effect of the complexes on some metabolic enzymes was examined and it was demonstrated that the enzymes inhibited by ligands and their complex molecules at micromolar level. The best Ki value for α-glycosidase enzyme was absorved 1.01±0.08 µM for compound 6. The biological activity of ligand and metal complexes against enzymes was compared with molecular docking method. The enzymes used against ligand and metal complexes respectively: Achethylcholinesterase for ID 4M0E (AChE), butyrylcholinesterase for ID 5NN0 (BChE), α-glycosidase for ID 1XSI (α-Gly). ADME analysis was performed to examine the drug properties of the compounds (3-6). Besides, the anticancer properties of the complexes were studied. The doses of all compounds caused significant reductions in MCF-7 cell viability. The 3 and 5 compounds administered to PC-3 cells exhibited a more pronounced cytotoxic effect than the other two compounds (4 and 6). Furthermore, antibacterial activities of these compounds against Escherichia coli and Staphylococcus aureus were examined.Communicated by Ramaswamy H. Sarma.


Assuntos
Butirilcolinesterase , Complexos de Coordenação , Acetilcolinesterase/metabolismo , Antibacterianos/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Glicosídeo Hidrolases/metabolismo , Indóis/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
2.
Turk J Chem ; 44(6): 1574-1586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488254

RESUMO

The 4-(2-[3,4-dimethoxyphenoxy] phenoxy) phthalonitrile was synthesized as the starting material of new syntheses. Zinc, copper, and cobalt phthalocyanines were achieved by reaction of starting compound with Zn(CH3COO)2, CuCl2, and CoCl2 metal salts. Basic spectroscopic methods such as nuclear magnetic resonance electronic absorption, mass and infrared spectrometry were used in the structural characterization of the compounds. Absorption, excitation, and emission measurements of the fluorescence zinc phthalocyanine compound were also investigated in THF. Then, structural, energy, and electronic properties for synthesized metallophthalocyanines were determined by quantum chemical calculations, including the DFT method. The bandgap of HOMO and LUMO was determined to be chemically active. Global reactivity (I, A, η, s, µ, χ, ω) and nonlinear properties were studied. In addition, molecular electrostatic potential (MEP) maps were drawn to identify potential reactive regions of metallophthalocyanine (M-Pc) compounds. Photovoltaic performances of phthalocyanine compounds for dye sensitive solar cells were investigated. The solar conversion efficiency of DSSC based on copper, zinc, and cobalt phthalocyanine compounds was 1.69%, 1.35%, and 1.54%, respectively. The compounds have good solubility and show nonlinear optical properties. Zinc phthalocyanine gave fluorescence emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA