Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 97(12): 3179-3196, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37794256

RESUMO

Aflatoxin B1 (AFB1) is a highly hepatotoxic and carcinogenic mycotoxin produced by Aspergillus species. The compound is mainly metabolized in the liver and its metabolism varies between species. The present study quantified relevant AFB1- metabolites formed by mouse, rat, and human primary hepatocytes after treatment with 1 µM and 10 µM AFB1. The use of liquid chromatographic separation coupled with tandem mass spectrometric detection enabled the selective and sensitive determination of phase I and phase II metabolites of AFB1 over incubation times of up to 24 h. The binding of AFB1 to macromolecules was also considered. The fastest metabolism of AFB1 was observed in mouse hepatocytes which formed aflatoxin P1 as a major metabolite and also its glucuronidated form, while AFP1 occurred only in traces in the other species. Aflatoxin M1 was formed in all species and was, together with aflatoxin Q1 and aflatoxicol, the main metabolite in human cells. Effective epoxidation led to high amounts of DNA adducts already 30 min post-treatment, especially in rat hepatocytes. Lower levels of DNA adducts and fast DNA repair were found in mouse hepatocytes. Also, protein adducts arising from reactive intermediates were formed rapidly in all three species. Detoxification via glutathione conjugation and subsequent formation of the N-acetylcysteine derivative appeared to be similar in mice and in rats and strongly differed from human hepatocytes which did not form these metabolites at all. The use of qualitative reference material of a multitude of metabolites and the comparison of hepatocyte metabolism in three species using advanced methods enabled considerations on toxification and detoxification mechanisms of AFB1. In addition to glutathione conjugation, phase I metabolism is strongly involved in the detoxification of AFB1.


Assuntos
Aflatoxina B1 , Aflatoxinas , Humanos , Ratos , Camundongos , Animais , Aflatoxina B1/toxicidade , Cromatografia Líquida de Alta Pressão , Adutos de DNA/metabolismo , Espectrometria de Massas em Tandem , DNA , Aflatoxinas/farmacologia , Aflatoxinas/toxicidade , Fígado , Hepatócitos/metabolismo , Glutationa/metabolismo
2.
Chem Biol Interact ; 351: 109728, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34717914

RESUMO

An in vitro/in silico method that determines the risk of human drug induced liver injury in relation to oral doses and blood concentrations of drugs was recently introduced. This method utilizes information on the maximal blood concentration (Cmax) for a specific dose of a test compound, which can be estimated using physiologically-based pharmacokinetic modelling, and a cytotoxicity test in cultured human hepatocytes. In the present study, we analyzed if the addition of an assay that measures the inhibition of bile acid export carriers, like BSEP and/or MRP2, to the existing method improves the differentiation of hepatotoxic and non-hepatotoxic compounds. Therefore, an export assay for 5-chloromethylfluorescein diacetate (CMFDA) was established. We tested 36 compounds in a concentration-dependent manner for which the risk of hepatotoxicity for specific oral doses and the capacity to inhibit hepatocyte export carriers are known. Compared to the CTB cytotoxicity test, substantially lower EC10 values were obtained using the CMFDA assay for several known BSEP and/or MRP2 inhibitors. To quantify if the addition of the CMFDA assay to our test system improves the overall separation of hepatotoxic from non-hepatotoxic compounds, the toxicity separation index (TSI) was calculated. We obtained a better TSI using the lower alert concentration from either the CMFDA or the CTB test (TSI: 0.886) compared to considering the CTB test alone (TSI: 0.775). In conclusion, the data show that integration of the CMFDA assay with an in vitro test battery improves the differentiation of hepatotoxic and non-hepatotoxic compounds in a set of compounds that includes bile acid export carrier inhibitors.


Assuntos
Citotoxinas/toxicidade , Hepatócitos/efeitos dos fármacos , Testes de Toxicidade/métodos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas , Fluoresceínas/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Proteína 2 Associada à Farmacorresistência Múltipla/antagonistas & inibidores , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismo
3.
Chem Sci ; 10(46): 10789-10801, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31857889

RESUMO

Precision medicine has revolutionized the treatment of patients in EGFR driven non-small cell lung cancer (NSCLC). Targeted drugs show high response rates in genetically defined subsets of cancer patients and markedly increase their progression-free survival as compared to conventional chemotherapy. However, recurrent acquired drug resistance limits the success of targeted drugs in long-term treatment and requires the constant development of novel efficient inhibitors of drug resistant cancer subtypes. Herein, we present covalent inhibitors of the drug resistant gatekeeper mutant EGFR-L858R/T790M based on the pyrrolopyrimidine scaffold. Biochemical and cellular characterization, as well as kinase selectivity profiling and western blot analysis, substantiate our approach. Moreover, the developed compounds possess high activity against multi drug resistant EGFR-L858R/T790M/C797S in biochemical assays due to their highly reversible binding character, that was revealed by characterization of the binding kinetics. In addition, we present the first X-ray crystal structures of covalent inhibitors in complex with C797S-mutated EGFR which provide detailed insight into their binding mode.

4.
Methods Mol Biol ; 1981: 25-53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016646

RESUMO

Cholestasis, the impairment of bile flux out of the liver, is a common complication of many pathological liver disorders, such as cholangiopathies, primary biliary sclerosis, and primary biliary cirrhosis. Besides accumulation of bile acids in the liver and blood, it leads to a proliferative response of the biliary tree termed as a ductular reaction. The ductular reaction is characterized by enhanced proliferation of cholangiocytes, which form the epithelial lining of bile ducts. This strong reaction of the biliary tree has been reported to generate a source of progenitor cells that can differentiate to hepatocytes or cholangiocytes during regeneration. On the other hand, it can cause periportal fibrosis eventually progressing to cirrhosis and death. In 2D histology, this leads to the appearance of an increased number of duct lumina per area of tissue. Yet, the biliary tree is a 3D vstructure and the appearance of lumina in thin slices may be explained by the appearance of novel ducts or by ramification or convolution of existing ducts in 3D. In many such aspects, traditional 2D histology on thin slices limits our understanding of the response of the biliary tree. A comprehensive understanding of architecture remodeling of the biliary network in cholestasis depends on robust 3D sample preparation and analysis methods. To that end, we describe pipe-3D, a processing and analysis pipeline visualization based on immunofluorescence, confocal imaging, surface reconstructions, and automated morphometry of the biliary network in 3D at subcellular resolution. This pipeline has been used to discover extensive remodeling of interlobular bile ducts in cholestasis, wherein elongation, branching, and looping create a dense ductular mesh around the portal vein branch. Surface reconstructions generated by Pipe-3D from confocal data also show an approximately fivefold enhancement of the luminal duct surface through corrugation of the epithelial lamina, which may increase bile reabsorption and alleviate cholestasis. The response of interlobular ducts in cholestasis was shown to be in sharp contrast to that of large bile ducts, de novo duct formation during embryogenesis. It is also distinct from ductular response in other models of hepatic injury such as choline-deficient, ethionine-supplemented diet, where parenchymal tissue invasion by ducts and their branches is observed. Pipe-3D is applicable to any model of liver injury, and optionally integrates tissue clearing techniques for 3D analysis of thick (>500 µm) tissue sections.


Assuntos
Ductos Biliares/metabolismo , Colestase/metabolismo , Imunofluorescência/métodos , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Microscopia Confocal
5.
Cancer Res ; 79(9): 2367-2378, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30858154

RESUMO

Aberrations within the PI3K/AKT signaling axis are frequently observed in numerous cancer types, highlighting the relevance of these pathways in cancer physiology and pathology. However, therapeutic interventions employing AKT inhibitors often suffer from limitations associated with target selectivity, efficacy, or dose-limiting effects. Here we present the first crystal structure of autoinhibited AKT1 in complex with the covalent-allosteric inhibitor borussertib, providing critical insights into the structural basis of AKT1 inhibition by this unique class of compounds. Comprehensive biological and preclinical evaluation of borussertib in cancer-related model systems demonstrated a strong antiproliferative activity in cancer cell lines harboring genetic alterations within the PTEN, PI3K, and RAS signaling pathways. Furthermore, borussertib displayed antitumor activity in combination with the MEK inhibitor trametinib in patient-derived xenograft models of mutant KRAS pancreatic and colon cancer. SIGNIFICANCE: Borussertib, a first-in-class covalent-allosteric AKT inhibitor, displays antitumor activity in combination with the MEK inhibitor trametinib in patient-derived xenograft models and provides a starting point for further pharmacokinetic/dynamic optimization.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridonas/farmacologia , Pirimidinonas/farmacologia , Animais , Apoptose , Ciclo Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Chem Biol Interact ; 298: 104-111, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30465738

RESUMO

Pyrrolizidine alkaloids (PA) are a group of secondary plant metabolites belonging to the most widely distributed natural toxins. PA intoxication of humans leads to severe liver damage, such as hepatomegaly, hepatic necrosis, fibrosis and cirrhosis. An acute consequence observed after ingestion of high amounts of PA is veno-occlusive disease (VOD) where the hepatic sinusoidal endothelial cells are affected. However, the mechanisms leading to VOD after PA intoxication remain predominantly unknown. Thus, we investigated PA-induced molecular effects on human umbilical vein endothelial cells (HUVEC). We compared the effects of PA with the effects of PA metabolites obtained by in vitro metabolism using liver homogenate (S9 fraction). In vitro-metabolized lasiocarpine and senecionine resulted in significant cytotoxic effects in HUVEC starting at 300 µM. Initial molecular effect screening using a PCR array with genes associated with endothelial cell biology showed PA-induced upregulation of the Fas receptor, which is involved in extrinsic apoptosis, and regulation of a number of interleukins, as well as of different enzymes relevant for prostanoid synthesis. Modulation of prostanoid synthesis was subsequently studied at the mRNA and protein levels and verified by increased release of prostaglandin I2 as the main prostanoid of endothelial cells. All effects occurred only with in vitro-metabolically activated PA lasiocarpine and senecionine. By contrast, no effect was observed for the PA echimidine, heliotrine, lasiocarpine, senecionine, senkirkine and platyphylline in the absence of an external metabolizing system up to the highest tested concentration of 500 µM. Overall, our results confirm the metabolism-dependent toxification of PA and elucidate the involved pathways. These include induction of inflammatory cytokines and deregulation of the prostanoid synthesis pathway in endothelial cells, linking for the first time PA-dependent changes in prostanoid release to distinct alterations at the mRNA and protein levels of enzymes of prostanoid synthesis.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Prostaglandinas/biossíntese , Alcaloides de Pirrolizidina/toxicidade , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Epoprostenol/metabolismo , Hepatopatia Veno-Oclusiva/induzido quimicamente , Células Endoteliais da Veia Umbilical Humana , Humanos , Inativação Metabólica/efeitos dos fármacos , Fígado/metabolismo , Masculino , Alcaloides de Pirrolizidina/farmacocinética , Ratos Wistar , Tromboxano A2/metabolismo
7.
J Med Chem ; 60(18): 7725-7744, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28853575

RESUMO

Reversible epidermal growth factor receptor (EGFR) inhibitors prompt a beneficial clinical response in non-small cell lung cancer patients who harbor activating mutations in EGFR. However, resistance mutations, particularly the gatekeeper mutation T790M, limit this efficacy. Here, we describe a structure-guided development of a series of covalent and mutant-selective EGFR inhibitors that effectively target the T790M mutant. The pyrazolopyrimidine-based core differs structurally from that of aminopyrimidine-based third-generation EGFR inhibitors and therefore constitutes a new set of inhibitors that target this mechanism of drug resistance. These inhibitors exhibited strong inhibitory effects toward EGFR kinase activity and excellent inhibition of cell growth in the drug-resistant cell line H1975, without significantly affecting EGFR wild-type cell lines. Additionally, we present the in vitro ADME/DMPK parameters for a subset of the inhibitors as well as in vivo pharmacokinetics in mice for a candidate with promising activity profile.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Mutação Puntual , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/química , Pirazóis/farmacocinética , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia
8.
Arch Toxicol ; 91(3): 1335-1352, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27999878

RESUMO

We describe a two-photon microscopy-based method to evaluate the in vivo systemic transport of compounds. This method comprises imaging of the intact liver, kidney and intestine, the main organs responsible for uptake and elimination of xenobiotics and endogenous molecules. The image quality of the acquired movies was sufficient to distinguish subcellular structures like organelles and vesicles. Quantification of the movement of fluorescent dextran and fluorescent cholic acid derivatives in different organs and their sub-compartments over time revealed significant dynamic differences. Calculated half-lives were similar in the capillaries of all investigated organs but differed in the specific sub-compartments, such as parenchymal cells and bile canaliculi of the liver, glomeruli, proximal and distal tubules of the kidney and lymph vessels (lacteals) of the small intestine. Moreover, tools to image immune cells, which can influence transport processes in inflamed tissues, are described. This powerful approach provides new possibilities for the analysis of compound transport in multiple organs and can support physiologically based pharmacokinetic modeling, in order to obtain more precise predictions at the whole body scale.


Assuntos
Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Microscopia/métodos , Xenobióticos/análise , Xenobióticos/farmacocinética , Acetaminofen/farmacocinética , Acetaminofen/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Intestinos/efeitos dos fármacos , Rim/citologia , Rim/metabolismo , Células de Kupffer/efeitos dos fármacos , Fígado/citologia , Masculino , Camundongos Transgênicos , Gravação em Vídeo
9.
J Biol Chem ; 291(8): 3837-47, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26719328

RESUMO

Members of the receptor tyrosine kinase family (RTK) have been shown to be present in the nucleus of cells; however, the mechanisms underlying their trafficking to the nucleus, and their relevance once there are poorly understood. In the present study, we focus on the RTK ErbB3 and elucidate the mechanisms regulating its trafficking. We show that heregulin-stimulation induces trafficking of phosphorylated ErbB3 from the plasma membrane to the nucleus via a clathrin-independent mechanism. Nuclear import of ErbB3 occurs via importin ß1, which drives the receptor through the nuclear pore complex. In the nucleus, ErbB3 interacts with transcription complexes, and thereby has a role in transcriptional regulation. Our results also demonstrate that ErbB3 nuclear localization is transient as it is exported out of the nucleus by the nuclear receptor protein crm-1. Analysis of normal, regenerating tissues, and tumors showed that ErbB3 nuclear translocation is a common event in proliferating tissues.


Assuntos
Proliferação de Células/fisiologia , Clatrina/metabolismo , Endocitose/fisiologia , Poro Nuclear/metabolismo , Receptor ErbB-3/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Clatrina/genética , Endocitose/efeitos dos fármacos , Células HEK293 , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Neuregulina-1/farmacologia , Poro Nuclear/genética , Receptor ErbB-3/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Proteína Exportina 1
10.
Arch Toxicol ; 89(10): 1861-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26280096

RESUMO

Many substances are hepatotoxic due to their ability to cause intrahepatic cholestasis. Therefore, there is a high demand for in vitro systems for the identification of cholestatic properties of new compounds. Primary hepatocytes cultivated in collagen sandwich cultures are known to establish bile canaliculi which enclose secreted biliary components. Cholestatic compounds are mainly known to inhibit bile excretion dynamics, but may also alter canalicular volume, or hepatocellular morphology. So far, techniques to assess time-resolved morphological changes of bile canaliculi in sandwich cultures are not available. In this study, we developed an automated system that quantifies dynamics of bile canaliculi recorded in conventional time-lapse image sequences. We validated the hepatocyte sandwich culture system as an appropriate model to study bile canaliculi in vitro by showing structural similarity measured as bile canaliculi length per hepatocyte to that observed in vivo. Moreover, bile canalicular excretion kinetics of CMFDA (5-chloromethylfluorescein diacetate) in sandwich cultures resembled closely the kinetics observed in vivo. The developed quantification technique enabled the quantification of dynamic changes in individual bile canaliculi. With this technique, we were able to clearly distinguish between sandwich cultures supplemented with dexamethasone and insulin from control cultures. In conclusion, the automated quantification system offers the possibility to systematically study the causal relationship between disturbed bile canalicular dynamics and cholestasis.


Assuntos
Canalículos Biliares/efeitos dos fármacos , Técnicas de Cultura de Células , Colágeno/química , Hepatócitos/efeitos dos fármacos , Animais , Canalículos Biliares/metabolismo , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Colestase Intra-Hepática/induzido quimicamente , Dexametasona/administração & dosagem , Fluoresceínas/farmacocinética , Hepatócitos/metabolismo , Insulina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Arch Toxicol ; 88(6): 1267-80, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24748426

RESUMO

Since xenobiotics enter the organism via the liver, hepatocytes must cope with numerous perturbations, including modifications of proteins leading to endoplasmic reticulum stress (ER-stress). This triggers a signaling pathway termed unfolded protein response (UPR) that aims to restore homeostasis or to eliminate disturbed hepatocytes by apoptosis. In the present study, we used the well-established CCl4 hepatotoxicity model in mice to address the questions whether CCl4 induces ER-stress and, if so, whether the well-known ER-stress effector CHOP is responsible for CCl4-induced apoptosis. For this purpose, we treated mice with a high dose of CCl4 injected i.p. and followed gene expression profile over time using Affymetrix gene array analysis. This time resolved gene expression analysis allowed the identification of gene clusters with overrepresented binding sites for the three most important ER-stress induced transcription factors, CHOP, XBP1 and ATF4. Such result was confirmed by the demonstration of CCl4-induced XBP1 splicing, upregulation of CHOP at mRNA and protein levels, and translocation of CHOP to the nucleus. Two observations indicated that CHOP may be responsible for CCl4-induced cell death: (1) Nuclear translocation of CHOP was exclusively observed in the pericentral fraction of hepatocytes that deteriorate in response to CCl4 and (2) CHOP-regulated genes with previously reported pro-apoptotic function such as GADD34, TRB3 and ERO1L were induced in the pericentral zone as well. Therefore, we compared CCl4 induced hepatotoxicity in CHOP knockout versus wild-type mice. Surprisingly, genetic depletion of CHOP did not afford protection against CCl4-induced damage as evidenced by serum GOT and GPT as well as quantification of dead tissue areas. The negative result was obtained at several time points (8, 24 and 72 h) and different CCl4 doses (1.6 and 0.132 g/kg). Overall, our results demonstrate that all branches of the UPR are activated in mouse liver upon CCl4 treatment. However, CHOP does not play a critical role in CCl4-induced cell death and cannot be considered as a biomarker strictly linked to hepatotoxicity. The role of alternative UPR effectors such as XBP1 remains to be investigated.


Assuntos
Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator de Transcrição CHOP/genética , Fator 4 Ativador da Transcrição/genética , Animais , Apoptose/efeitos dos fármacos , Tetracloreto de Carbono/administração & dosagem , Morte Celular , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Fatores de Tempo , Fatores de Transcrição/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteína 1 de Ligação a X-Box
12.
Arch Toxicol ; 87(2): 337-45, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23274394

RESUMO

Cultivated hepatocytes represent a well-established in vitro system. However, the applicability of hepatocytes in toxicogenomics is still controversially discussed. Recently, an in vivo/in vitro discrepancy has been described, whereby the non-genotoxic rat liver carcinogen methapyrilene alters the expression of the metabolizing genes SULT1A1 and ABAT, as well as the DNA damage response gene GADD34 in vitro, but not in vivo. If the collagen sandwich cultures of hepatocytes really produce false-positive data, this would compromise its application in toxicogenomics. To revisit the putative in vivo/in vitro discrepancy, we first analyzed and modeled methapyrilene concentrations in the portal vein of rats. The relatively short half-life of 2.8 h implies a rapid decrease in orally administered methapyrilene in vivo below concentrations that can cause gene expression alterations. This corresponded to the time-dependent alteration levels of GADD34, ABAT and SULT1A1 RNA in the liver: RNA levels are altered 1, 6 and 12 h after methapyrilene administration, but return to control levels after 24 and 72 h. In contrast, methapyrilene concentrations in the culture medium supernatant of primary rat hepatocyte cultures decreased slowly. This explains why GADD34, ABAT and SULT1A1 were still deregulated after 24 h exposure in vitro, but not in vivo. It should also be considered that the earliest analyzed time point in the previous in vivo studies was 24 h after methapyrilene administration. In conclusion, previously observed in vitro/in vivo discrepancy can be explained by different pharmacokinetics present in vitro and in vivo. When the in vivo half-life is short, levels of some initially altered genes may have returned to control levels already 24 h after administration.


Assuntos
Carcinógenos/farmacocinética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Metapirileno/farmacocinética , 4-Aminobutirato Transaminase/genética , Animais , Antígenos de Diferenciação/genética , Arilsulfotransferase/genética , Carcinógenos/toxicidade , Células Cultivadas , Meia-Vida , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Metapirileno/toxicidade , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA