Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 24(1): 161, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430364

RESUMO

DNA methylation signatures are usually based on multivariate approaches that require hundreds of sites for predictions. Here, we propose a computational framework named CimpleG for the detection of small CpG methylation signatures used for cell-type classification and deconvolution. We show that CimpleG is both time efficient and performs as well as top performing methods for cell-type classification of blood cells and other somatic cells, while basing its prediction on a single DNA methylation site per cell type. Altogether, CimpleG provides a complete computational framework for the delineation of DNAm signatures and cellular deconvolution.


Assuntos
Processamento de Proteína Pós-Traducional , Metilação , Motivos de Nucleotídeos
2.
Nucleic Acids Res ; 44(20): e153, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27484474

RESUMO

The study of changes in protein-DNA interactions measured by ChIP-seq on dynamic systems, such as cell differentiation, response to treatments or the comparison of healthy and diseased individuals, is still an open challenge. There are few computational methods comparing changes in ChIP-seq signals with replicates. Moreover, none of these previous approaches addresses ChIP-seq specific experimental artefacts arising from studies with biological replicates. We propose THOR, a Hidden Markov Model based approach, to detect differential peaks between pairs of biological conditions with replicates. THOR provides all pre- and post-processing steps required in ChIP-seq analyses. Moreover, we propose a novel normalization approach based on housekeeping genes to deal with cases where replicates have distinct signal-to-noise ratios. To evaluate differential peak calling methods, we delineate a methodology using both biological and simulated data. This includes an evaluation procedure that associates differential peaks with changes in gene expression as well as histone modifications close to these peaks. We evaluate THOR and seven competing methods on data sets with distinct characteristics from in vitro studies with technical replicates to clinical studies of cancer patients. Our evaluation analysis comprises of 13 comparisons between pairs of biological conditions. We show that THOR performs best in all scenarios.


Assuntos
Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Cadeias de Markov , Análise de Sequência de DNA , Algoritmos , Diferenciação Celular/genética , Conjuntos de Dados como Assunto , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Epigênese Genética , Histonas/metabolismo , Humanos , Linfoma de Células B/genética , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA