Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 100: 697-705, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948106

RESUMO

Bacterial nanocellulose (BNC) is a natural polymer composed of glucose units with an important application as a two and three-dimensional scaffold for tissue engineering. However, as a polysaccharide, BNC does not have the biological signals of protein biomaterials. Therefore, this paper aims to develop a novel methodology to biomimic soft extracellular matrix (ECM) chemistry on to 3D BNC using the bioengineering of fibroblasts (the cells responsible for producing and regenerating the ECM) to immobilise adhesion proteins such as collagen and fibronectin. Modified 3D BNC (Mod-BNC) biomaterials were morphologically, thermally, and chemically characterised, and furthermore, the cell response was analysed by adhesion studies using atomic force microscopy (AFM), XTT assay, and confocal microscopy. Cell-derived proteins were deposited on the BNC nanoribbon network to modify its surface. The contact angle was increased from 40° to 60°, reducing the wettability of the biomaterial, and during thermogravimetry, the proteins in Mod-BNC exhibited an enhanced thermal stability because of the interactions between themselves and BNC. Chemical and immunocytochemistry analyses confirmed the presence of collagen type I and fibronectin on 3D BNC. These proteins activate integrin adhesion pathways that generate stronger cell adhesions. AFM experiments showed higher forces and energies on modified biomaterials, and moreover, the cells that adhered on to Mod-BNC exhibited higher mitochondrial activity and higher cell populations per cubic millimetre than non-modified surfaces (NMod-BNC). Accordingly, it was established that this novel methodology is robust and able to biomimic the chemical surface of soft ECM and immobilise cell-derived adhesion proteins from fibroblast; moreover, the Mod-BNC exhibited better cell response than NMod-BNC because of the biological signals in 3D BNC.


Assuntos
Bactérias/química , Celulose/química , Nanopartículas/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Adesão Celular , Sobrevivência Celular , Camundongos , Células NIH 3T3 , Nanopartículas/ultraestrutura , Propriedades de Superfície , Termogravimetria
2.
Carbohydr Polym ; 179: 118-125, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29111034

RESUMO

Commercialization of cellulose nanofibrils (CNFs) involves addressing various challenges. Among them, wet storage and transport of CNFs due to their irreversible agglomeration when dehydrated (i.e., hornification) is a pressing issue, as it increases transportation costs. Various alternatives have been proposed in literature, some of which require the use of high-energy treatments to facilitate their redispersion after drying, while others may be inadequate when applied to food and pharmaceutical applications. The present work examines a new approach that involves using poly (vinyl alcohol) (PVA) as a capping agent to redisperse CNFs. Different CNF to PVA ratios were used, and redispersed samples were analyzed in terms of their morphological, physicochemical and rheological properties to assess changes occurring during processing. Results show that the ratio of CNFs to PVA affects the final properties of the redispersed product, when the ratio 1:2.5 was used, the redispersed product closely resembles the never dried sample.

3.
Int J Biol Macromol ; 69: 208-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24875317

RESUMO

Chitosan films reinforced with bacterial cellulose (BC) nanoribbons were studied to understand the influence of acid (acetic and lactic acids) on the reinforcing effect. For both acids, the maximum concentration of the reinforcing constituent was 5wt% with respect to the dry weight of chitosan. The infrared spectra, mechanical properties, morphology and antimicrobial activity of the films were analyzed. The results showed a difference between the acids in their behavior and effect on the reinforcement, with a tensile strength of 12.3MPa for the acetic acid films and 3.3MPa for the lactic acid films. Additionally, the bacterial inhibition tests were shown to be positive for the lactic acid films and negative for the acetic acid films. Therefore, exchanging the acid used in these films may be desirable for certain applications.


Assuntos
Ácido Acético/química , Celulose/biossíntese , Celulose/química , Quitosana/química , Gluconacetobacter/metabolismo , Ácido Láctico/química , Nanoestruturas/química , Embalagem de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA