Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804721

RESUMO

We develop here a comprehensive experimental approach to independently determine charge carrier parameters, namely, carrier density and mass, in plasmonic indium tin oxide nanocrystals. Typically, in plasmonic nanocrystals, only the ratio between these two parameters is accessible through optical absorption experiments. The multitechnique methodology proposed here combines single particle and ensemble optical and magneto-optical spectroscopies, also using 119Sn solid-state nuclear magnetic resonance spectroscopy to probe the surface depletion layer. Our methodology overcomes the limitations of standard fitting approaches based on absorption spectroscopy and ultimately gives access to carrier effective mass directly on the NCs, discarding the use of literature value based on bulk or thin film materials. We found that mass values depart appreciably from those measured on thin films; consequently, we found carrier density values that are different from reported literature values for similar systems. The effective mass was found to deviate from the parabolic approximation at a high carrier density. Finally, the dopant activation and defect diagram for ITO NCs for tin doping between 2.5 and 15% are determined. This approach can be generalized to other plasmonic heavily doped semiconductor nanostructures and represents, to the best of our knowledge, the only method to date to characterize the full Drude parameter space of 0-D nanosystems.

2.
Angew Chem Int Ed Engl ; 63(1): e202313315, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37962845

RESUMO

Chiral materials formed by aggregated organic compounds play a fundamental role in chiral optoelectronics, photonics and spintronics. Nonetheless, a precise understanding of the molecular interactions involved remains an open problem. Here we introduce magnetic circular dichroism (MCD) as a new tool to elucidate molecular interactions and structural parameters of a supramolecular system. A detailed analysis of MCD together with electronic circular dichroism spectra combined to ab initio calculations unveils essential information on the geometry and energy levels of a self-assembled thin film made of a carbazole di-bithiophene chiral molecule. This approach can be extended to a generality of chiral organic materials and can help rationalizing the fundamental interactions leading to supramolecular order. This in turn could enable a better understanding of structure-property relationships, resulting in a more efficient material design.

3.
Chem Sci ; 13(41): 12208-12218, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36349110

RESUMO

It is well assessed that the charge transport through a chiral potential barrier can result in spin-polarized charges. The possibility of driving this process through visible photons holds tremendous potential for several aspects of quantum information science, e.g., the optical control and readout of qubits. In this context, the direct observation of this phenomenon via spin-sensitive spectroscopies is of utmost importance to establish future guidelines to control photo-driven spin selectivity in chiral structures. Here, we provide direct proof that time-resolved electron paramagnetic resonance (EPR) can be used to detect long-lived spin polarization generated by photoinduced charge transfer through a chiral bridge. We propose a system comprising CdSe quantum dots (QDs), as a donor, and C60, as an acceptor, covalently linked through a saturated oligopeptide helical bridge (χ) with a rigid structure of ∼10 Å. Time-resolved EPR spectroscopy shows that the charge transfer in our system results in a C60 radical anion, whose spin polarization maximum is observed at longer times with respect to that of the photogenerated C60 triplet state. Notably, the theoretical modelling of the EPR spectra reveals that the observed features may be compatible with chirality-induced spin selectivity, but the electronic features of the QD do not allow the unambiguous identification of the CISS effect. Nevertheless, we identify which parameters need optimization for unambiguous detection and quantification of the phenomenon. This work lays the basis for the optical generation and direct manipulation of spin polarization induced by chirality.

4.
Nano Lett ; 22(22): 9036-9044, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346871

RESUMO

Active modulation of the plasmonic response is at the forefront of today's research in nano-optics. For a fast and reversible modulation, external magnetic fields are among the most promising approaches. However, fundamental limitations of metals hamper the applicability of magnetoplasmonics in real-life active devices. While improved magnetic modulation is achievable using ferromagnetic or ferromagnetic-noble metal hybrid nanostructures, these suffer from severely broadened plasmonic response, ultimately decreasing their performance. Here we propose a paradigm shift in the choice of materials, demonstrating for the first time the outstanding magnetoplasmonic performance of transparent conductive oxide nanocrystals with plasmon resonance in the near-infrared. We report the highest magneto-optical response for a nonmagnetic plasmonic material employing F- and In-codoped CdO nanocrystals, due to the low carrier effective mass and the reduced plasmon line width. The performance of state-of-the-art ferromagnetic nanostructures in magnetoplasmonic refractometric sensing experiments are exceeded, challenging current best-in-class localized plasmon-based approaches.

5.
Nanoscale ; 14(28): 10190-10199, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35796327

RESUMO

The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.


Assuntos
Grafite , Pseudomonas aeruginosa , Biofilmes , Grafite/química , Grafite/farmacologia , Monossacarídeos
6.
ACS Appl Mater Interfaces ; 14(30): 35276-35286, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35867887

RESUMO

In this study, we present a thermoplasmonic transparent ink based on a colloidal dispersion of indium tin oxide (ITO) nanoparticles, which can offer several advantages as anti-counterfeiting technology. The custom ink could be directly printed on several substrates, and it is transparent under visible light but is able to generate heat by absorption of NIR radiation. Dynamic temperature mapping of the printed motifs was performed by using a thermal camera while irradiating the samples with an IR lamp. The printed samples presented fine features (in the order of 75 µm) and high thermal resolution (of about 250 µm). The findings are supported by thermal finite-element simulations, which also allow us to explore the effect of different substrate characteristics on the thermal readout. Finally, we built a demonstrator comprising a QR Code invisible to the naked eye, which became visible in thermal images under NIR radiation. The high transparency of the printed ink and the high speed of the thermal reading (figures appear/disappear in less than 1 s) offer an extremely promising strategy toward low-cost, scalable production of photothermally active invisible labels.

7.
ACS Appl Mater Interfaces ; 14(25): 29087-29098, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35708301

RESUMO

Here, we synthesize a Au@Fe3O4 core@shell system with a highly uniform unprecedented star-like shell morphology with combined plasmonic and magnetic properties. An advanced electron microscopy characterization allows assessing the multifaceted nature of the Au core and its role in the growth of the peculiar epitaxial star-like shell with excellent crystallinity and homogeneity. Magnetometry and magneto-optical spectroscopy revealed a pure magnetite shell, with a superior saturation magnetization compared to similar Au@Fe3O4 heterostructures reported in the literature, which is ascribed to the star-like morphology, as well as to the large thickness of the shell. Of note, Au@Fe3O4 nanostar-loaded cancer cells displayed magneto-mechanical stress under a low frequency external alternating magnetic field (few tens of Hz). On the other hand, such a uniform, homogeneous, and thick magnetite shell enables the shift of the plasmonic resonance of the Au core to 640 nm, which is the largest red shift achievable in Au@Fe3O4 homogeneous core@shell systems, prompting application in photothermal therapy and optical imaging in the first biologically transparent window. Preliminary experiments performing irradiation of a stable water suspension of the nanostar and Au@Fe3O4-loaded cancer cell culture suspension at 658 nm confirmed their optical response and their suitability for photothermal therapy. The outstanding features of the prepared system can be thus potentially exploited as a multifunctional platform for magnetic-plasmonic applications.


Assuntos
Óxido Ferroso-Férrico , Terapia Fototérmica , Óxido Ferroso-Férrico/química , Ouro/química , Campos Magnéticos , Magnetismo
8.
Phys Rev Lett ; 127(21): 217402, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860084

RESUMO

Active nanophotonics can be realized by controlling the optical properties of materials with external magnetic fields. Here, we explore the influence of optical anisotropy on the magneto-optical activity in nonmagnetic hyperbolic nanoparticles. We demonstrate that the magneto-optical response is driven by the hyperbolic dispersion via the coupling of metallic-induced electric and dielectric-induced magnetic dipolar optical modes with static magnetic fields. Magnetic circular dichroism experiments confirm the theoretical predictions and reveal tunable magneto-optical activity across the visible and near infrared spectral range.

9.
ACS Appl Nano Mater ; 4(2): 1057-1066, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33778418

RESUMO

Plasmon resonance modulation with an external magnetic field (magnetoplasmonics) represents a promising route for the improvement of the sensitivity of plasmon-based refractometric sensing. To this purpose, an accurate material choice is needed to realize hybrid nanostructures with an improved magnetoplasmonic response. In this work, we prepared core@shell nanostructures made of an 8 nm Au core surrounded by an ultrathin iron oxide shell (≤1 nm). The presence of the iron oxide shell was found to significantly enhance the magneto-optical response of the noble metal in the localized surface plasmon region, compared with uncoated Au nanoparticles. With the support of an analytical model, we ascribed the origin of the enhancement to the shell-induced increase in the dielectric permittivity around the Au core. The experiment points out the importance of the spectral position of the plasmonic resonance in determining the magnitude of the magnetoplasmonic response. Moreover, the analytical model proposed here represents a powerful predictive tool for the quantification of the magnetoplasmonic effect based on resonance position engineering, which has significant implications for the design of active magnetoplasmonic devices.

10.
Langmuir ; 33(9): 2411-2419, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28191982

RESUMO

Aluminum oxide surfaces are of utmost interest in different biotech applications, in particular for their use as adjuvants (i.e., booster of the immune response against infectious agents in vaccines production). In this framework, imogolite clays combine the chemical flexibility of an exposed alumina surface with 1D nanostructure. This work reports on the interaction between amino acids and imogolite, using turbidimetry, ζ-potential measurements, and Fourier transform infrared spectroscopy as main characterization tools. Amino acids with different side chain functional groups were investigated, showing that glutamic acid (Glu) has the strongest affinity for the imogolite surface. This was exploited to prepare a composite material made of a synthetic surfactant bearing a Glu polar head and a hydrophobic C12 alkyl tail, adsorbed onto the surface of imogolite. The adsorption of a model drug (rhodamine B isothiocyanate) by the hybrid was evaluated both in water and in physiological saline conditions. The findings of this paper suggest that the combination between the glutamate headgroup and imogolite represents a promising platform for the fabrication of hybrid nanostructures with tailored functionalities.


Assuntos
Silicatos de Alumínio/química , Aminoácidos/química , Ácido Glutâmico/química , Tensoativos/química , Adsorção , Argila , Isotiocianatos/química , Tamanho da Partícula , Rodaminas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA