Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Clin Rheumatol ; 43(1): 511-519, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37978145

RESUMO

OBJECTIVES: To identify biomarkers at the gene expression level to predict response to methotrexate (MTX) in patients with rheumatoid arthritis (RA). METHODS: MTX-naïve patients with RA were started on MTX and followed up over three months. The disease activity score 28 (DAS28) was used to classify patients into responders and non-responders. Genome-wide gene expression analysis was performed in CD4 + and CD14 + mononuclear cells sampled from whole blood at baseline to identify differentially expressed genes in responders versus non-responders. Gene selection methods and prediction modelling obtained the most relevant differentially expressed genes. A logistic regression prediction model was subsequently constructed and validated via bootstrapping. The area under the receiver operating characteristic (AUC) curve was calculated to judge model quality. RESULTS: Seventy-nine patients with RA (53.4 ± 13.9 years, 74.7% females) were enrolled, and 70 finished the study with a documented treatment EULAR response (77.1% responders). Forty-six differentially expressed genes were found. The most promising genes were KRTAP4-11, LOC101927584, and PECAM1 in CD4 + cells and PSMD5 and ID1 in CD14 + cells. The final prediction model using these genes reached an AUC of 90%; the validation set's AUC was 82%. CONCLUSIONS: Our prediction model constructed via genome-wide gene expression analysis in CD4 + and CD14 + mononuclear cells yielded excellent predictions. Our findings necessitate confirmation in other cohorts of MTX-naïve RA patients. Especially if used in conjunction with previously identified clinical and laboratory (bio)markers, our results could help predict response to MTX in RA to guide treatment decisions. Key Points • Patients with rheumatoid arthritis may or may not respond to treatment with methotrexate, which is the recommended first-line drug in guidelines around the world. • In non-responders, valuable time is lost until second-line treatments are started. • This study aimed at predicting response to methotrexate by identifying differentially expressed genes from peripheral blood samples. • The final prediction model yielded excellent prognostic values, but validation in other cohorts is necessary to corroborate these findings.


Assuntos
Antirreumáticos , Artrite Reumatoide , Feminino , Humanos , Masculino , Metotrexato/uso terapêutico , Antirreumáticos/uso terapêutico , Resultado do Tratamento , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Biomarcadores , Expressão Gênica
2.
Acta Physiol (Oxf) ; 239(2): e14028, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37609862

RESUMO

Over the past four decades, research on 24-h rhythms has yielded numerous remarkable findings, revealing their genetic, molecular, and physiological significance for immunity and various diseases. Thus, circadian rhythms are of fundamental importance to mammals, as their disruption and misalignment have been associated with many diseases and the abnormal functioning of many physiological processes. In this article, we provide a brief overview of the molecular regulation of 24-h rhythms, their importance for immunity, the deleterious effects of misalignment, the link between such pathological rhythms and rheumatoid arthritis (RA), and the potential exploitation of chronobiological rhythms for the chronotherapy of inflammatory autoimmune diseases, using RA as an example.

3.
Arthritis Res Ther ; 25(1): 140, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542341

RESUMO

BACKGROUND: Disruption of glucocorticoid (GC) signaling in osteoblasts results in a marked attenuation of acute antibody-induced arthritis. The role of endogenous GCs in chronic inflammatory arthritis is however not fully understood. Here, we investigated the impact of endogenous GC signaling in osteoblasts on inflammation and bone integrity under chronic inflammatory arthritis by inactivating osteoblastic GC signaling in a long-term K/BxN serum transfer-induced induced arthritis (STIA) model. METHODS: Intracellular GC signaling in osteoblasts was disrupted by transgenic (tg) overexpression of 11beta-hydroxysteroid dehydrogenase type 2 (11ß-HSD2). Inflammatory arthritis was induced in 5-week-old male tg mice and their wild type (WT) littermates by intraperitoneal (i.p.) injection of K/BxN serum while controls (CTRLs) received phosphate-buffered saline (PBS). In a first cohort, K/BxN STIA was allowed to abate until  the endpoint of 42 days (STIA). To mimic rheumatic flares, a second cohort was additionally injected on days 14 and 28 with K/BxN serum (STIA boost). Arthritis severity was assessed daily by clinical scoring and ankle size measurements. Ankle joints were assessed histopathologically. Systemic effects of inflammation on long bone metabolism were analyzed in proximal tibiae by micro-computed tomography (µCT) and histomorphometry. RESULTS: Acute arthritis developed in both tg and WT mice (STIA and STIA boost) and peaked around day 8. While WT STIA and tg STIA mice showed a steady decline of inflammation until day 42, WT STIA boost and tg STIA boost mice exhibited an arthritic phenotype over a period of 42 days. Clinical arthritis severity did not differ significantly between WT and tg mice, neither in the STIA nor in the STIA boost cohorts. Correspondingly, histological indices of inflammation, cartilage damage, and bone erosion showed no significant difference between WT and tg mice on day 42. Histomorphometry revealed an increased bone turnover in tg CTRL and tg STIA boost compared to WT CTRL and WT STIA boost animals, respectively. CONCLUSIONS: In contrast to the previously reported modulating effects of endogenous GC signaling in osteoblasts during acute K/BxN STIA, this effect seems to perish during the chronic inflammatory and resolution phase. These findings indicate that endogenous GC signaling in osteoblasts may mainly be relevant during acute and subacute inflammatory processes.


Assuntos
Artrite Experimental , Artrite , Camundongos , Masculino , Animais , Glucocorticoides , Microtomografia por Raio-X , Artrite/metabolismo , Osteoblastos/metabolismo , Camundongos Transgênicos , Inflamação/patologia , Artrite Experimental/metabolismo
4.
Z Rheumatol ; 82(6): 479-490, 2023 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-37488246

RESUMO

BACKGROUND: Energy is the currency of life. The systemic and intracellular energy metabolism plays an essential role for the energy supply of the resting and activated immune system and this also applies to chronic inflammatory diseases. OBJECTIVE: This presentation examines both components of the systemic and cellular energy metabolism in health and chronic inflammation. MATERIAL AND METHODS: A literature search was conducted using PubMed, Embase and the Cochrane Library. The information is presented in the form of a narrative review. RESULTS: A chronically activated immune system acquires large amounts of energy-rich substrates that are lost for other functions of the body. In particular, the immune system and the brain are in competition. The consequences of this competition are many known diseases, such as fatigue, anxiety, depression, anorexia, sleep problems, sarcopenia, osteoporosis, insulin resistance, hypertension and others. The permanent change in the brain causes long-term alterations that stimulate disease sequelae even after disease remission. In the intracellular energy supply, chronic inflammation typically involves a conversion to glycolysis (to lactate, which has its own regulatory functions) and the pentose phosphate pathway in disorders of mitochondrial function. The chronic changes in immune cells of patients with rheumatoid arthritis (RA) lead to a disruption of the citric acid cycle (Krebs cycle). The hypoxic situation in the inflamed tissue stimulates many alterations. A differentiation is made between effector functions and regulatory functions of immune cells. CONCLUSION: Based on the energy changes mentioned, novel treatment suggestions can be made in addition to those already known in energy metabolism.


Assuntos
Artrite Reumatoide , Inflamação , Humanos , Sistema Imunitário , Doença Crônica , Metabolismo Energético/fisiologia
5.
Front Immunol ; 14: 1165758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287970

RESUMO

Objective: Proteome analyses in patients with newly diagnosed, untreated giant cell arteritis (GCA) have not been reported previously, nor are changes of protein expression upon treatment with glucocorticoids (GC) and/or tocilizumab (TCZ) known. The GUSTO trial allows to address these questions, provides the opportunity to learn about the differential effects of GC and TCZ on proteomics and may help to identify serum proteins to monitor disease activity. Methods: Serum samples obtained from 16 patients with new-onset GCA at different time points (day 0, 3, 10, and week 4, 24, 52) during the GUSTO trial (NCT03745586) were examined for 1436 differentially expressed proteins (DEPs) based on proximity extension assay technology. The patients received 500 mg methylprednisolone intravenously for 3 consecutive days followed by TCZ monotherapy. Results: When comparing day 0 (before the first GC infusion) with week 52 (lasting remission), 434 DEPs (213↑, 221↓) were identified. In response to treatment, the majority of changes occurred within 10 days. GC inversely regulated 25 proteins compared to remission. No difference was observed between weeks 24 and 52 during established remission and ongoing TCZ treatment. Expression of CCL7, MMP12, and CXCL9 was not regulated by IL6. Conclusion: Disease-regulated serum proteins improved within 10 days and were normalized within 24 weeks, showing a kinetic corresponding to the gradual achievement of clinical remission. The proteins inversely regulated by GC and TCZ shed light on the differential effects of the two drugs. CCL7, CXCL9, and MMP12 are biomarkers that reflect disease activity despite normalized C-reactive protein levels.


Assuntos
Arterite de Células Gigantes , Arterite de Células Gigantes/tratamento farmacológico , Arterite de Células Gigantes/imunologia , Arterite de Células Gigantes/metabolismo , Humanos , Proteômica , Glucocorticoides/uso terapêutico
6.
J Clin Med ; 12(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373840

RESUMO

The trabecular bone score (TBS) can be determined in addition to the Dual Energy X-ray Absorptiometry (DXA) for bone mineral density (BMD) measurement to diagnose, evaluate, and stratify bone loss and decide on appropriate treatment in patients at risk. Especially in patients with secondary osteoporosis, TBS detects restricted bone quality. To investigate the influence of an additional evaluation of TBS on patients' treatment strategy decisions, we enrolled 292 patients, with a high proportion of patients with secondary osteoporosis, from one outpatient unit over one year. Patients eligible for BMD measurement had the option to opt-in for TBS measurement. We analyzed demographic data, leading diagnoses, bone metabolism parameters, and results of BMD and TBS measurements. More than 90% of patients consented to TBS measurement. TBS measurement influenced the decision in approximately 40% of patients with a treatment indication for anti-osteoporotic drugs. We demonstrate that depending on the underlying disease/risk spectrum, 21-25.5% of patients had an unremarkable BMD measurement with poor bone quality shown in the TBS measurement. In patients with secondary osteoporosis, the use of TBS supplementary to DXA seems useful to better assess fracture risk and, thus, to initiate therapy for osteoporosis in these patients in time.

7.
Clin Exp Rheumatol ; 41(7): 1434-1442, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36622109

RESUMO

OBJECTIVES: Oestrogen deficiency is a rare disease and leads inter alia to arthralgia and osteoporosis in men. The clinical relevance of aromatase to a functioning male metabolism has become evident since 1991, when cases of patients with oestrogen deficiency caused by aromatase mutation were first described. Only few cases are known so far, which will now be presented in a case report and review of the literature. METHODS: All available publications since the first description in 1991 dealing with loss-of-function aromatase mutation in men were summarised and our case report was added. RESULTS: The mutations that cause the aromatase protein to lose function leads to a rather heterogeneous clinical picture. It is, however, clear that oestrogens play a central role in male patients, especially in bone metabolism. Most frequently, tall stature, unclosed epiphyseal joints, and osteoporosis are detected in affected individuals as a consequence of the change in hormonal status. CONCLUSIONS: As low oestrogen is associated with arthralgia, patients with aromatase mutation may be referred to a rheumatologist. Despite aromatase deficiency being a rare disease, the study of the effects of oestrogen on male bone development provides important insights for endocrine bone regulation. It has been demonstrated that androgens alone are not sufficient for adequate skeletal development in males. The described effects of loss of oestrogens are known from the aromatase inhibitor therapy in breast cancer treatment. This work highlights the important role of oestrogens in individual health and disease in men. Molecular effects of oestrogens on bone metabolism are summarised.


Assuntos
Aromatase , Osteoporose , Humanos , Masculino , Aromatase/genética , Aromatase/metabolismo , Doenças Raras , Estrogênios , Osteoporose/tratamento farmacológico , Osteoporose/genética , Mutação
8.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232895

RESUMO

The mechanisms of mast cell (MC) degranulation and MC-driven skin symptoms are well-described. In contrast, data about the role of mitochondrial respiration for immune functions of human skin MCs are lacking. Oxygen consumption rate (OCR) in primary human skin MCs during IgE-mediated activation in the absence of glucose was examined using a metabolic flux analyzer. Effects of the inhibition of mitochondrial complex I (by rotenone A) and III (by myxothiazol) on degranulation and cytokine secretion (IL-4, IL-5, IL-6, IL-13, TNF-α, and GM-CSF) were explored by the ß-hexosaminidase release assay and multiplex ELISA. IgE-mediated activation rapidly increased the mitochondrial OCR and extracellular acidification; the contribution of non-mitochondrial oxygen consumption remained unchanged at lower levels. Both myxothiazol and rotenone A reduced OCR, the mitochondrial parameters, and extracellular acidification; however, myxothiazol did not affect degranulation and cytokine secretion. In contrast, degranulation and the secretion of IL-6, IL-13, TNF-α, and GM-CSF were reduced by rotenone A, whereas the secretion of IL-4 and IL-5 was not significantly affected. The inhibitors did not affect cell viability. Our results highlight the important role played by mitochondrial respiration in primary human skin MCs and allow for a conclusion on a hierarchy of their effector functions. Drugs targeting specific pathways in mitochondria may provide future options to control MC-driven skin symptoms.


Assuntos
Degranulação Celular , Mastócitos , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Imunoglobulina E , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Mastócitos/metabolismo , Metacrilatos , Rotenona/metabolismo , Rotenona/farmacologia , Tiazóis , Fator de Necrose Tumoral alfa/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
9.
Front Immunol ; 13: 911050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935995

RESUMO

Cellular metabolism modulates effector functions in human CD4+ T (Th) cells by providing energy and building blocks. Conversely, cellular metabolic responses are modulated by various influences, e.g., age. Thus, we hypothesized that metabolic reprogramming in human Th cells during aging modulates effector functions and contributes to "inflammaging", an aging-related, chronic, sterile, low-grade inflammatory state characterized by specific proinflammatory cytokines. Analyzing the metabolic response of human naive and memory Th cells from young and aged individuals, we observed that memory Th cells exhibit higher glycolytic and mitochondrial fluxes than naive Th cells. In contrast, the metabolism of the latter was not affected by donor age. Memory Th cells from aged donors showed a higher respiratory capacity, mitochondrial content, and intracellular ROS production than those from young donors without altering glucose uptake and cellular ATP levels, which finally resulted in higher secreted amounts of proinflammatory cytokines, e.g., IFN-γ, IP-10 from memory Th cells taken from aged donors after TCR-stimulation which were sensitive to ROS inhibition. These findings suggest that metabolic reprogramming in human memory Th cells during aging results in an increased expression of proinflammatory cytokines through enhanced ROS production, which may contribute to the pathogenesis of inflammaging.


Assuntos
Linfócitos T CD4-Positivos , Citocinas , Idoso , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
10.
Int J Mol Sci ; 23(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35563440

RESUMO

Unspecific antibody binding takes a significant toll on researchers in the form of both the economic burden and the disappointed hopes of promising new therapeutic targets. Despite recent initiatives promoting antibody validation, a uniform approach addressing this issue has not yet been developed. Here, we demonstrate that the anti-glucocorticoid receptor (GR) antibody clone 5E4 predominantly targets two different proteins of approximately the same size, namely AMP deaminase 2 (AMPD2) and transcription intermediary factor 1-beta (TRIM28). This paper is intended to generate awareness of unspecific binding of well-established reagents and advocate the use of more rigorous verification methods to improve antibody quality in the future.


Assuntos
Receptores de Glucocorticoides , Fatores de Transcrição , Células Cultivadas , Células Clonais/metabolismo , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo
11.
Z Rheumatol ; 81(8): 652-659, 2022 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-35412048

RESUMO

Rheumatoid arthritis and osteoarthritis are two related chronic diseases of the musculoskeletal system which are particularly pronounced in the region of joints and bones. Their pathogeneses are associated with chronic inflammation, which can disrupt homeostasis in bones and articular cartilage. Degradation products deriving from articular cartilage can contribute to the exacerbation of inflammation in the joint region. Mechanical stimuli and blood vessels also play a central role in both the regulation of bone growth as well as in the regeneration of bone tissue. Not only chronic inflammatory processes but also hormonal changes after menopause or undesired effects of glucocorticoid therapy have an influence on the balance between bone resorption and deposition, by promoting the former and reducing the latter. This results in decreased bone quality and, in some cases, considerable loss of bone or osteoporosis. An in-depth understanding of these processes at the molecular, cellular, and tissue level, as well as of the changes present in chronic inflammatory diseases, has been the focus of research at the German Rheumatism Research Center (Deutsches Rheuma-Forschungszentrum, DRFZ) since its foundation. Based on an improved understanding of these mechanisms, the DRFZ aims to develop improved prevention and treatment strategies with effects even in early disease stages.


Assuntos
Cartilagem Articular , Osteoartrite , Feminino , Glucocorticoides , Humanos , Inflamação , Células Estromais
12.
Metab Eng ; 72: 116-132, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35296430

RESUMO

Osteoarthritis (OA) is the most common degenerative joint disease and a major cause of age-related disability worldwide, mainly due to pain, the disease's main symptom. Although OA was initially classified as a non-inflammatory joint disease, recent attention has been drawn to the importance of synovitis and fibroblast-like synoviocytes (FLS) in the pathogenesis of OA. FLS can be divided into two major populations: thymus cell antigen 1 (THY1)- FLS are currently classified as quiescent cells and assumed to destroy bone and cartilage, whereas THY1+ FLS are invasively proliferative cells that drive synovitis. Both THY1- and THY1+ FLS share many characteristics with fibroblast-like progenitors - mesenchymal stromal cells (MSC). However, it remains unclear whether synovitis-induced metabolic changes exist in FLS from OA patients and whether metabolic differences may provide a mechanistic basis for the identification of approaches to precisely convert the pathologically proliferative synovitis-driven FLS phenotype into a healthy one. To identify novel pathological mechanisms of the perpetuation and manifestation of OA, we analyzed metabolic, proteomic, and functional characteristics of THY1+ FLS from patients with OA. Proteome data and pathway analysis revealed that an elevated expression of pyruvate dehydrogenase kinase (PDK) 3 was characteristic of proliferative THY1+ FLS from patients with OA. These FLS also had the highest podoplanin (PDPN) expression and localized to the sublining but also the lining layer in OA synovium in contrast to the synovium of ligament trauma patients. Inhibition of PDKs reprogrammed metabolism from glycolysis towards oxidative phosphorylation and reduced FLS proliferation and inflammatory cytokine secretion. This study provides new mechanistic insights into the importance of FLS metabolism in the pathogenesis of OA. Given the selective overexpression of PDK3 in OA synovium and its restricted distribution in synovial tissue from ligament trauma patients and MSC, PDKs may represent attractive selective metabolic targets for OA treatment. Moreover, targeting PDKs does not affect cells in a homeostatic, oxidative state. Our data provide an evidence-based rationale for the idea that inhibition of PDKs could restore the healthy THY1+ FLS phenotype. This approach may mitigate the progression of OA and thereby fundamentally change the clinical management of OA from the treatment of symptoms to addressing causes.


Assuntos
Osteoartrite , Sinovite , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Oxirredutases/metabolismo , Proteômica , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvatos/metabolismo , Sinovite/metabolismo , Sinovite/patologia
14.
Bone ; 154: 116247, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743042

RESUMO

The initial phase of fracture healing is crucial for the success of bone regeneration and is characterized by an inflammatory milieu and low oxygen tension (hypoxia). Negative interference with or prolongation of this fine-tuned initiation phase will ultimately lead to a delayed or incomplete healing such as non-unions which then requires an effective and gentle therapeutic intervention. Common reasons include a dysregulated immune response, immunosuppression or a failure in cellular adaptation to the inflammatory hypoxic milieu of the fracture gap and a reduction in vascularizing capacity by environmental noxious agents (e.g. rheumatoid arthritis or smoking). The hypoxia-inducible factor (HIF)-1α is responsible for the cellular adaptation to hypoxia, activating angiogenesis and supporting cell attraction and migration to the fracture gap. Here, we hypothesized that stabilizing HIF-1α could be a cost-effective and low-risk prevention strategy for fracture healing disorders. Therefore, we combined a well-known HIF-stabilizer - deferoxamine (DFO) - and a less known HIF-enhancer - macrophage migration inhibitory factor (MIF) - to synergistically induce improved fracture healing. Stabilization of HIF-1α enhanced calcification and osteogenic differentiation of MSCs in vitro. In vivo, only the application of DFO without MIF during the initial healing phase increased callus mineralization and vessel formation in a preclinical mouse-osteotomy-model modified to display a compromised healing. Although we did not find a synergistically effect of MIF when added to DFO, our findings provide additional support for a preventive strategy towards bone healing disorders in patients with a higher risk by accelerating fracture healing using DFO to stabilize HIF-1α.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Osteogênese , Animais , Regeneração Óssea , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Consolidação da Fratura , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Oxirredutases Intramoleculares/farmacologia , Fatores Inibidores da Migração de Macrófagos/farmacologia , Camundongos , Osteotomia
15.
Front Immunol ; 12: 730672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737742

RESUMO

At sites of inflammation, monocytes carry out specific immune functions while facing challenging metabolic restrictions. Here, we investigated the potential of human monocytes to adapt to conditions of gradually inhibited oxidative phosphorylation (OXPHOS) under glucose free conditions. We used myxothiazol, an inhibitor of mitochondrial respiration, to adjust two different levels of decreased mitochondrial ATP production. At these levels, and compared to uninhibited OXPHOS, we assessed phagocytosis, production of reactive oxygen species (ROS) through NADPH oxidase (NOX), expression of surface activation markers CD16, CD80, CD11b, HLA-DR, and production of the inflammatory cytokines IL-1ß, IL-6 and TNF-α in human monocytes. We found phagocytosis and the production of IL-6 to be least sensitive to metabolic restrictions while surface expression of CD11b, HLA-DR, production of TNF-α, IL-1ß and production of ROS through NOX were most compromised by inhibition of OXPHOS in the absence of glucose. Our data demonstrate a short-term hierarchy of immune functions in human monocytes, which represents novel knowledge potentially leading to the development of new therapeutics in monocyte-mediated inflammatory diseases.


Assuntos
Metabolismo Energético , Glucose/deficiência , Interleucina-6/metabolismo , Mitocôndrias/metabolismo , Monócitos/metabolismo , Fagocitose , Trifosfato de Adenosina/metabolismo , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Metacrilatos/farmacologia , Mitocôndrias/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Fagocitose/efeitos dos fármacos , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/farmacologia
16.
Biomedicines ; 9(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203470

RESUMO

Fractures are one of the most frequently occurring traumatic events worldwide. Approximately 10% of fractures lead to bone healing disorders, resulting in strain for affected patients and enormous costs for society. In order to shed light into underlying mechanisms of bone regeneration (habitual or disturbed), and to develop new therapeutic strategies, various in vivo, ex vivo and in vitro models can be applied. Undeniably, in vivo models include the systemic and biological situation. However, transferability towards the human patient along with ethical concerns regarding in vivo models have to be considered. Fostered by enormous technical improvements, such as bioreactors, on-a-chip-technologies and bone tissue engineering, sophisticated in vitro models are of rising interest. These models offer the possibility to use human cells from individual donors, complex cell systems and 3D models, therefore bridging the transferability gap, providing a platform for the introduction of personalized precision medicine and finally sparing animals. Facing diverse processes during fracture healing and thus various scientific opportunities, the reliability of results oftentimes depends on the choice of an appropriate model. Hence, we here focus on categorizing available models with respect to the requirements of the scientific approach.

17.
FASEB J ; 35(7): e21684, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34159634

RESUMO

Adenine nucleotides represent crucial immunomodulators in the extracellular environment. The ectonucleotidases CD39 and CD73 are responsible for the sequential catabolism of ATP to adenosine via AMP, thus promoting an anti-inflammatory milieu induced by the "adenosine halo". AMPD2 intracellularly mediates AMP deamination to IMP, thereby both enhancing the degradation of inflammatory ATP and reducing the formation of anti-inflammatory adenosine. Here, we show that this enzyme is expressed on the surface of human immune cells and its predominance may modify inflammatory states by altering the extracellular milieu. Surface AMPD2 (eAMPD2) expression on monocytes was verified by immunoblot, surface biotinylation, mass spectrometry, and immunofluorescence microscopy. Flow cytometry revealed enhanced monocytic eAMPD2 expression after TLR stimulation. PBMCs from patients with rheumatoid arthritis displayed significantly higher levels of eAMPD2 expression compared with healthy controls. Furthermore, the product of AMPD2-IMP-exerted anti-inflammatory effects, while the levels of extracellular adenosine were not impaired by an increased eAMPD2 expression. In summary, our study identifies eAMPD2 as a novel regulator of the extracellular ATP-adenosine balance adding to the immunomodulatory CD39-CD73 system.


Assuntos
5'-Nucleotidase/metabolismo , AMP Desaminase/metabolismo , Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Leucócitos/metabolismo , Apirase , Células Cultivadas , Proteínas Ligadas por GPI/metabolismo , Humanos
18.
Biomedicines ; 9(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33808042

RESUMO

Oxygen availability varies throughout the human body in health and disease. Under physiological conditions, oxygen availability drops from the lungs over the blood stream towards the different tissues into the cells and the mitochondrial cavities leading to physiological low oxygen conditions or physiological hypoxia in all organs including primary lymphoid organs. Moreover, immune cells travel throughout the body searching for damaged cells and foreign antigens facing a variety of oxygen levels. Consequently, physiological hypoxia impacts immune cell function finally controlling innate and adaptive immune response mainly by transcriptional regulation via hypoxia-inducible factors (HIFs). Under pathophysiological conditions such as found in inflammation, injury, infection, ischemia and cancer, severe hypoxia can alter immune cells leading to dysfunctional immune response finally leading to tissue damage, cancer progression and autoimmunity. Here we summarize the effects of physiological and pathophysiological hypoxia on innate and adaptive immune activity, we provide an overview on the control of immune response by cellular hypoxia-induced pathways with focus on the role of HIFs and discuss the opportunity to target hypoxia-sensitive pathways for the treatment of cancer and autoimmunity.

19.
J Bone Miner Res ; 36(6): 1189-1201, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33534144

RESUMO

After trauma, the formed fracture hematoma within the fracture gap contains all the important components (immune/stem cells, mediators) to initiate bone regeneration immediately. Thus, it is of great importance but also the most susceptible to negative influences. To study the interaction between bone and immune cells within the fracture gap, up-to-date in vitro systems should be capable of recapitulating cellular and humoral interactions and the physicochemical microenvironment (eg, hypoxia). Here, we first developed and characterized scaffold-free bone-like constructs (SFBCs), which were produced from bone marrow-derived mesenchymal stromal cells (MSCs) using a macroscale mesenchymal condensation approach. SFBCs revealed permeating mineralization characterized by increased bone volume (µCT, histology) and expression of osteogenic markers (RUNX2, SPP1, RANKL). Fracture hematoma (FH) models, consisting of human peripheral blood (immune cells) mixed with MSCs, were co-cultivated with SFBCs under hypoxic conditions. As a result, FH models revealed an increased expression of osteogenic (RUNX2, SPP1), angiogenic (MMP2, VEGF), HIF-related (LDHA, PGK1), and inflammatory (IL6, IL8) markers after 12 and 48 hours co-cultivation. Osteogenic and angiogenic gene expression of the FH indicate the osteoinductive potential and, thus, the biological functionality of the SFBCs. IL-6, IL-8, GM-CSF, and MIP-1ß were detectable within the supernatant after 24 and 48 hours of co-cultivation. To confirm the responsiveness of our model to modifying substances (eg, therapeutics), we used deferoxamine (DFO), which is well known to induce a cellular hypoxic adaptation response. Indeed, DFO particularly increased hypoxia-adaptive, osteogenic, and angiogenic processes within the FH models but had little effect on the SFBCs, indicating different response dynamics within the co-cultivation system. Therefore, based on our data, we have successfully modeled processes within the initial fracture healing phase in vitro and concluded that the cross-talk between bone and immune cells in the initial fracture healing phase is of particular importance for preclinical studies. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Regeneração Óssea , Diferenciação Celular , Consolidação da Fratura , Hematoma , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA