Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260600

RESUMO

Alzheimer's disease (AD) is an age-associated neurodegenerative disorder characterized by progressive neuronal loss and pathological accumulation of the misfolded proteins amyloid-ß and tau1,2. Neuroinflammation mediated by microglia and brain-resident macrophages plays a crucial role in AD pathogenesis1-5, though the mechanisms by which age, genes, and other risk factors interact remain largely unknown. Somatic mutations accumulate with age and lead to clonal expansion of many cell types, contributing to cancer and many non-cancer diseases6,7. Here we studied somatic mutation in normal aged and AD brains by three orthogonal methods and in three independent AD cohorts. Analysis of bulk RNA sequencing data from 866 samples from different brain regions revealed significantly higher (~two-fold) overall burdens of somatic single-nucleotide variants (sSNVs) in AD brains compared to age-matched controls. Molecular-barcoded deep (>1000X) gene panel sequencing of 311 prefrontal cortex samples showed enrichment of sSNVs and somatic insertions and deletions (sIndels) in cancer driver genes in AD brain compared to control, with recurrent, and often multiple, mutations in genes implicated in clonal hematopoiesis (CH)8,9. Pathogenic sSNVs were enriched in CSF1R+ microglia of AD brains, and the high proportion of microglia (up to 40%) carrying some sSNVs in cancer driver genes suggests mutation-driven microglial clonal expansion (MiCE). Analysis of single-nucleus RNA sequencing (snRNAseq) from temporal neocortex of 62 additional AD cases and controls exhibited nominally increased mosaic chromosomal alterations (mCAs) associated with CH10,11. Microglia carrying mCA showed upregulated pro-inflammatory genes, resembling the transcriptomic features of disease-associated microglia (DAM) in AD. Our results suggest that somatic driver mutations in microglia are common with normal aging but further enriched in AD brain, driving MiCE with inflammatory and DAM signatures. Our findings provide the first insights into microglial clonal dynamics in AD and identify potential new approaches to AD diagnosis and therapy.

2.
Nat Methods ; 20(8): 1222-1231, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386189

RESUMO

Jointly profiling the transcriptome, chromatin accessibility and other molecular properties of single cells offers a powerful way to study cellular diversity. Here we present MultiVI, a probabilistic model to analyze such multiomic data and leverage it to enhance single-modality datasets. MultiVI creates a joint representation that allows an analysis of all modalities included in the multiomic input data, even for cells for which one or more modalities are missing. It is available at scvi-tools.org .


Assuntos
Modelos Estatísticos , Transcriptoma
3.
Res Sq ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37292694

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia in older adults. Neuropathological and imaging studies have demonstrated a progressive and stereotyped accumulation of protein aggregates, but the underlying molecular and cellular mechanisms driving AD progression and vulnerable cell populations affected by disease remain coarsely understood. The current study harnesses single cell and spatial genomics tools and knowledge from the BRAIN Initiative Cell Census Network to understand the impact of disease progression on middle temporal gyrus cell types. We used image-based quantitative neuropathology to place 84 donors spanning the spectrum of AD pathology along a continuous disease pseudoprogression score and multiomic technologies to profile single nuclei from each donor, mapping their transcriptomes, epigenomes, and spatial coordinates to a common cell type reference with unprecedented resolution. Temporal analysis of cell-type proportions indicated an early reduction of Somatostatin-expressing neuronal subtypes and a late decrease of supragranular intratelencephalic-projecting excitatory and Parvalbumin-expressing neurons, with increases in disease-associated microglial and astrocytic states. We found complex gene expression differences, ranging from global to cell type-specific effects. These effects showed different temporal patterns indicating diverse cellular perturbations as a function of disease progression. A subset of donors showed a particularly severe cellular and molecular phenotype, which correlated with steeper cognitive decline. We have created a freely available public resource to explore these data and to accelerate progress in AD research at SEA-AD.org.

4.
Cell Rep ; 39(1): 110615, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385734

RESUMO

Mutations in the chromodomain helicase DNA-binding 8 (CHD8) gene are a frequent cause of autism spectrum disorder (ASD). While its phenotypic spectrum often encompasses macrocephaly, implicating cortical abnormalities, how CHD8 haploinsufficiency affects neurodevelopmental is unclear. Here, employing human cerebral organoids, we find that CHD8 haploinsufficiency disrupted neurodevelopmental trajectories with an accelerated and delayed generation of, respectively, inhibitory and excitatory neurons that yields, at days 60 and 120, symmetrically opposite expansions in their proportions. This imbalance is consistent with an enlargement of cerebral organoids as an in vitro correlate of patients' macrocephaly. Through an isogenic design of patient-specific mutations and mosaic organoids, we define genotype-phenotype relationships and uncover their cell-autonomous nature. Our results define cell-type-specific CHD8-dependent molecular defects related to an abnormal program of proliferation and alternative splicing. By identifying cell-type-specific effects of CHD8 mutations, our study uncovers reproducible developmental alterations that may be employed for neurodevelopmental disease modeling.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Megalencefalia , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Haploinsuficiência/genética , Humanos , Megalencefalia/genética , Fatores de Transcrição/genética
6.
Nature ; 597(7878): 693-697, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34552240

RESUMO

One of the hallmarks of the cerebral cortex is the extreme diversity of interneurons1-3. The two largest subtypes of cortical interneurons, parvalbumin- and somatostatin-positive cells, are morphologically and functionally distinct in adulthood but arise from common lineages within the medial ganglionic eminence4-11. This makes them an attractive model for studying the generation of cell diversity. Here we examine how developmental changes in transcription and chromatin structure enable these cells to acquire distinct identities in the mouse cortex. Generic interneuron features are first detected upon cell cycle exit through the opening of chromatin at distal elements. By constructing cell-type-specific gene regulatory networks, we observed that parvalbumin- and somatostatin-positive cells initiate distinct programs upon settling within the cortex. We used these networks to model the differential transcriptional requirement of a shared regulator, Mef2c, and confirmed the accuracy of our predictions through experimental loss-of-function experiments. We therefore reveal how a common molecular program diverges to enable these neuronal subtypes to acquire highly specialized properties by adulthood. Our methods provide a framework for examining the emergence of cellular diversity, as well as for quantifying and predicting the effect of candidate genes on cell-type-specific development.


Assuntos
Córtex Cerebral/citologia , Epigênese Genética , Redes Reguladoras de Genes , Interneurônios/citologia , Neurogênese , Animais , Diferenciação Celular , Movimento Celular , Feminino , Fatores de Transcrição MEF2/genética , Masculino , Camundongos , Camundongos Knockout , Parvalbuminas/metabolismo , RNA-Seq , Análise de Célula Única , Somatostatina/metabolismo
7.
Patterns (N Y) ; 1(9): 100148, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33336201

RESUMO

Space agencies have announced plans for human missions to the Moon to prepare for Mars. However, the space environment presents stressors that include radiation, microgravity, and isolation. Understanding how these factors affect biology is crucial for safe and effective crewed space exploration. There is a need to develop countermeasures, to adapt plants and microbes for nutrient sources and bioregenerative life support, and to limit pathogen infection. Scientists across the world are conducting space omics experiments on model organisms and, more recently, on humans. Optimal extraction of actionable scientific discoveries from these precious datasets will only occur at the collective level with improved standardization. To address this shortcoming, we established ISSOP (International Standards for Space Omics Processing), an international consortium of scientists who aim to enhance standard guidelines between space biologists at a global level. Here we introduce our consortium and share past lessons learned and future challenges related to spaceflight omics.

8.
Nat Commun ; 11(1): 747, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029740

RESUMO

ATAC-seq has become a leading technology for probing the chromatin landscape of single and aggregated cells. Distilling functional regions from ATAC-seq presents diverse analysis challenges. Methods commonly used to analyze chromatin accessibility datasets are adapted from algorithms designed to process different experimental technologies, disregarding the statistical and biological differences intrinsic to the ATAC-seq technology. Here, we present a Bayesian statistical approach that uses latent space models to better model accessible regions, termed ChromA. ChromA annotates chromatin landscape by integrating information from replicates, producing a consensus de-noised annotation of chromatin accessibility. ChromA can analyze single cell ATAC-seq data, correcting many biases generated by the sparse sampling inherent in single cell technologies. We validate ChromA on multiple technologies and biological systems, including mouse and human immune cells, establishing ChromA as a top performing general platform for mapping the chromatin landscape in different cellular populations from diverse experimental designs.


Assuntos
Cromatina/genética , Genômica/métodos , Modelos Genéticos , Algoritmos , Animais , Teorema de Bayes , Sequenciamento de Cromatina por Imunoprecipitação , Biblioteca Gênica , Humanos , Cadeias de Markov , Camundongos , Anotação de Sequência Molecular , Análise de Célula Única
9.
Neuron ; 97(2): 341-355.e3, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29307712

RESUMO

Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.


Assuntos
Genes Homeobox , Medula Espinal/citologia , Animais , Teorema de Bayes , Membro Anterior/embriologia , Membro Anterior/inervação , Perfilação da Expressão Gênica , Membro Posterior/embriologia , Membro Posterior/inervação , Proteínas de Homeodomínio/fisiologia , Interneurônios/fisiologia , Região Lombossacral , Camundongos , Camundongos Knockout , Neurônios Motores/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Medula Espinal/embriologia , Tórax , Fatores de Transcrição/fisiologia
10.
Cell ; 165(1): 207-219, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26949184

RESUMO

Animals generate movement by engaging spinal circuits that direct precise sequences of muscle contraction, but the identity and organizational logic of local interneurons that lie at the core of these circuits remain unresolved. Here, we show that V1 interneurons, a major inhibitory population that controls motor output, fractionate into highly diverse subsets on the basis of the expression of 19 transcription factors. Transcriptionally defined V1 subsets exhibit distinct physiological signatures and highly structured spatial distributions with mediolateral and dorsoventral positional biases. These positional distinctions constrain patterns of input from sensory and motor neurons and, as such, suggest that interneuron position is a determinant of microcircuit organization. Moreover, V1 diversity indicates that different inhibitory microcircuits exist for motor pools controlling hip, ankle, and foot muscles, revealing a variable circuit architecture for interneurons that control limb movement.


Assuntos
Extremidades/fisiologia , Movimento , Células de Renshaw/química , Células de Renshaw/citologia , Medula Espinal/citologia , Fatores de Transcrição/análise , Animais , Camundongos , Propriocepção , Células de Renshaw/classificação , Células de Renshaw/fisiologia , Transcriptoma
11.
Cell ; 165(1): 220-233, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26949187

RESUMO

Documenting the extent of cellular diversity is a critical step in defining the functional organization of tissues and organs. To infer cell-type diversity from partial or incomplete transcription factor expression data, we devised a sparse Bayesian framework that is able to handle estimation uncertainty and can incorporate diverse cellular characteristics to optimize experimental design. Focusing on spinal V1 inhibitory interneurons, for which the spatial expression of 19 transcription factors has been mapped, we infer the existence of ~50 candidate V1 neuronal types, many of which localize in compact spatial domains in the ventral spinal cord. We have validated the existence of inferred cell types by direct experimental measurement, establishing this Bayesian framework as an effective platform for cell-type characterization in the nervous system and elsewhere.


Assuntos
Teorema de Bayes , Células de Renshaw/química , Células de Renshaw/citologia , Medula Espinal/citologia , Fatores de Transcrição/análise , Animais , Camundongos , Células de Renshaw/classificação , Transcriptoma
12.
Science ; 333(6047): 1262-6, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21885776

RESUMO

The taste system is one of our fundamental senses, responsible for detecting and responding to sweet, bitter, umami, salty, and sour stimuli. In the tongue, the five basic tastes are mediated by separate classes of taste receptor cells each finely tuned to a single taste quality. We explored the logic of taste coding in the brain by examining how sweet, bitter, umami, and salty qualities are represented in the primary taste cortex of mice. We used in vivo two-photon calcium imaging to demonstrate topographic segregation in the functional architecture of the gustatory cortex. Each taste quality is represented in its own separate cortical field, revealing the existence of a gustotopic map in the brain. These results expose the basic logic for the central representation of taste.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Paladar/fisiologia , Vias Aferentes , Animais , Córtex Cerebral/citologia , Cicloeximida , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem Molecular , Cloreto de Sódio , Glutamato de Sódio , Edulcorantes , Papilas Gustativas/fisiologia
13.
Nature ; 464(7292): 1182-6, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20376005

RESUMO

Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within approximately 150 mum) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.


Assuntos
Comportamento Animal/fisiologia , Aprendizagem/fisiologia , Córtex Motor/citologia , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Animais , Transporte Axonal , Comportamento de Escolha/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia , Odorantes/análise , Células Piramidais/fisiologia , Recompensa , Estimulação Química , Fatores de Tempo , Língua/citologia , Língua/inervação , Língua/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA