Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 20731, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671048

RESUMO

Past environmental changes are expected to have profoundly impacted diversity dynamics through time. While some previous studies showed an association between past climate changes or tectonic events and important shifts in lineage diversification, it is only recently that past environmental changes have been explicitly integrated in diversification models to test their influence on diversification rates. Here, we used a global reconstruction of tropical reef habitat dynamics during the Cenozoic and phylogenetic diversification models to test the influence of (i) major geological events, (ii) reef habitat fragmentation and (iii) reef area on the diversification of 9 major clades of tropical reef fish (Acanthuridae, Balistoidea, Carangoidea, Chaetodontidae, Haemulinae, Holocentridae, Labridae, Pomacentridae and Sparidae). The diversification models revealed a weak association between paleo-habitat changes and diversification dynamics. Specifically, the fragmentation of tropical reef habitats over the Cenozoic was found to be a driver of tropical reef fish diversification for 2 clades. However, overall, our approach did not allow the identification of striking associations between diversification dynamics and paleo-habitat fragmentation in contrast with theoretical model's predictions.


Assuntos
Peixes/genética , Peixes/fisiologia , Animais , Biodiversidade , Mudança Climática , Recifes de Corais , Ecossistema , Geologia , Filogenia
2.
Proc Biol Sci ; 288(1959): 20211574, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34583586

RESUMO

Generating genomic data for 19 tropical reef fish species of the Western Indian Ocean, we investigate how species ecology influences genetic diversity patterns from local to regional scales. We distinguish between the α, ß and γ components of genetic diversity, which we subsequently link to six ecological traits. We find that the α and γ components of genetic diversity are strongly correlated so that species with a high total regional genetic diversity display systematically high local diversity. The α and γ diversity components are negatively associated with species abundance recorded using underwater visual surveys and positively associated with body size. Pelagic larval duration is found to be negatively related to genetic ß diversity supporting its role as a dispersal trait in marine fishes. Deviation from the neutral theory of molecular evolution motivates further effort to understand the processes shaping genetic diversity and ultimately the diversification of the exceptional diversity of tropical reef fishes.


Assuntos
Recifes de Corais , Peixes , Animais , Biodiversidade , Tamanho Corporal , Evolução Molecular , Peixes/genética , Variação Genética
3.
Proc Biol Sci ; 286(1911): 20191506, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31530148

RESUMO

We develop a spatially explicit model of diversification based on palaeohabitat to explore the predictions of four major hypotheses potentially explaining the latitudinal diversity gradient (LDG), namely, the 'time-area', 'tropical niche conservatism', 'ecological limits' and 'evolutionary speed' hypotheses. We compare simulation outputs to observed diversity gradients in the global reef fish fauna. Our simulations show that these hypotheses are non-mutually exclusive and that their relative influence depends on the time scale considered. Simulations suggest that reef habitat dynamics produced the LDG during deep geological time, while ecological constraints shaped the modern LDG, with a strong influence of the reduction in the latitudinal extent of tropical reefs during the Neogene. Overall, this study illustrates how mechanistic models in ecology and evolution can provide a temporal and spatial understanding of the role of speciation, extinction and dispersal in generating biodiversity patterns.


Assuntos
Biodiversidade , Recifes de Corais , Peixes , Animais , Ecossistema
4.
Nat Commun ; 7: 11461, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27151103

RESUMO

The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.


Assuntos
Biodiversidade , Recifes de Corais , Clima Tropical , Animais , Antozoários , Austrália , Ecossistema , Peixes , Fósseis , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA