Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Data Brief ; 38: 107356, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34557572

RESUMO

Environmental data on organic products are needed to assess their environmental performance. The purpose of the ACV Bio project reported here was to generate environmental data as life cycle assessment (LCA) data for a sample of French organic production systems including cropping systems (annual crops, intercrops, forages), grassland, wine grapes, cow milk, calves, beef cattle, sheep, pigs, broilers and eggs. LCA was used to estimate environmental impacts of products from these systems. Recommended uses are to characterize part of the diversity of French organic farming systems and some of their environmental impacts, identify areas for improvement, perform eco-design and sensitivity analysis, and/or make system choices in a given context. However, these data do not represent average French organic products and should not be used as such. The MEANS-InOut web application was used to generate life cycle inventories (LCI). Impact assessment was performed using SimaPro v9 software. The Environmental Footprint 2.0 characterisation method was used to generate LCA data. These data were supplemented with three LCA indicators: cumulative energy demand, land competition (CML-IA non-baseline) and biodiversity loss. Three non-LCA indicators were also calculated for certain systems: diversity of crop families (for cropping systems), agro-ecological infrastructure (for sheep) and pesticide treatment frequency index (for grapes). In total, 173 products were modelled. LCA and non-LCA data are available in the Microsoft® Excel file at Data INRAE (https://doi.org/10.15454/TTR25S). LCI data are available in the AGRIBALYSE database and can be accessed using SimaPro and openLCA software. Farmer-practice data are available on demand.

2.
Data Brief ; 33: 106558, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304956

RESUMO

The sharing of total environmental impacts between the different products of a multi-output system is crucial in Life Cycle Assessment. ISO standards recommend subdivision then substitution methods when possible. Sometimes, allocations rules are necessary. They consist of allocating the total impact to the different products in proportion to a value that characterize the products. They can be based on physical parameters (such as mass, protein, dry matter, etc.) or the economic value of coproducts can be used as a proxy. As they are based on various type of parameters, allocation rules can lead to significantly different environmental impact results. Then a consensus is difficult to reach between stakeholders as for example in meat sector. To make the debate going further, Chen et al. (2017) proposed a new allocation method based on biophysical parameters (Chen et al., 2017). Adapted from previous methods, they propose to allocate impacts in proportion to the energy needed for the growth, the maintenance and the activity of each tissue. The method has been judged as scientifically viable but also particularly difficult to apply due to the amount of necessary data and to the complexity of the calculation model. In a recent project, we developed a freeware to easily calculate biophysical allocation factors as well as mass and economic factors to allow a fair comparison: MeatPartTool. We also collected data to create a dataset of mass, economic and biophysical allocation factors for a large range of beef (132 individuals), calf (54 individuals) and lamb (14 individuals) at the slaughterhouse stage. This data paper provides both primary data and calculated allocation factors.

3.
PLoS One ; 11(12): e0167343, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27930682

RESUMO

Feeds contribute highly to environmental impacts of livestock products. Therefore, formulating low-impact feeds requires data on environmental impacts of feed ingredients with consistent perimeters and methodology for life cycle assessment (LCA). We created the ECOALIM dataset of life cycle inventories (LCIs) and associated impacts of feed ingredients used in animal production in France. It provides several perimeters for LCIs (field gate, storage agency gate, plant gate and harbour gate) with homogeneously collected data from French R&D institutes covering the 2005-2012 period. The dataset of environmental impacts is available as a Microsoft® Excel spreadsheet on the ECOALIM website and provides climate change, acidification, eutrophication, non-renewable and total cumulative energy demand, phosphorus demand, and land occupation. LCIs in the ECOALIM dataset are available in the AGRIBALYSE® database in SimaPro® software. The typology performed on the dataset classified the 149 average feed ingredients into categories of low impact (co-products of plant origin and minerals), high impact (feed-use amino acids, fats and vitamins) and intermediate impact (cereals, oilseeds, oil meals and protein crops). Therefore, the ECOALIM dataset can be used by feed manufacturers and LCA practitioners to investigate formulation of low-impact feeds. It also provides data for environmental evaluation of feeds and animal production systems. Included in AGRIBALYSE® database and SimaPro®, the ECOALIM dataset will benefit from their procedures for maintenance and regular updating. Future use can also include environmental labelling of commercial products from livestock production.


Assuntos
Ração Animal , Animais , Produtos Agrícolas , França
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA