Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 101: 105942, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39284535

RESUMO

In this study, we investigated the role of two efflux transporters, p-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), in the cytotoxicity and intracellular accumulation of the organophosphate pesticide chlorpyrifos (CPF) and its active metabolite, CPF-oxon (CPFO), in a human-derived liver cell line (HepG2) and kidney epithelial cell line (HK-2). The cytotoxicity to CPF and CPFO differed between cell lines where HK-2 had lower IC50 values which could be attributed to lower basal expression and inducibility of metabolizing enzymes, transporters, and nuclear receptors in HK-2 cells. In HepG2 cells, co-exposure of CPF with a specific inhibitor of either P-gp or BCRP enhanced the cytotoxicity of CPF while co-exposure of CPFO with VRP enhanced the cytotoxicity of CPFO, suggesting the role of these transporters in the elimination CPF and CPFO. Inhibition of efflux transporters did not affect the cytotoxicity of CPF and CPFO in HK-2 cells. Co-incubation of CPF with P-gp and BCRP inhibitors increased the intracellular concentration of CPF in HepG2 cells suggesting that both transporters play a role in limiting the cellular accumulation of CPF in HepG2 cells. Our results provide evidence that inhibition of efflux transporters can enhance CPF-induced toxicity through enhanced cellular accumulation and raises additional questions regarding how pesticide-transporter interactions may influence toxicity of mixtures containing pesticides and other environmental chemicals.

2.
Mol Pharm ; 20(9): 4443-4452, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37492942

RESUMO

The high blood level of low-density lipoprotein cholesterol (LDL-C) is a primary risk factor for cardiovascular disease. Plant sterols, known as phytosterols (PSs), can reduce LDL-C in a range of 8-14%. The extent of LDL-C reduction depends on its formulation. Encapsulation into liposomes is one formulation strategy to enhance the efficiency of PSs. PSs (campesterol, stigmasterol, and ß-sitosterol) have frequently been assessed alone or in combination for their LDL-C-lowering ability. However, one naturally abundant PS, brassicasterol, has not yet been tested for its efficacy. We have previously developed a novel liposomal formulation containing the PS mixture present naturally in canola that is composed of brassicasterol, campesterol, and ß-sitosterol. In this work, the efficacy of our novel liposomal PS formulation that includes brassicasterol was assessed in a hamster model. Animals were divided into five groups: (i) liposomal PS in orange juice, (ii) liposomal PS in water, (iii) marketed PS in orange juice, (iv) control orange juice, and (v) control water. The animals were fed a high-fat, cholesterol-supplemented (0.5%) diet to induce hypercholesterolemia. The treatment was administered orally once daily for 4 weeks. Fasting blood samples were collected at baseline, week 2, and week 4. The extent of the reduction of total cholesterol, LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides was compared among the groups. Liposomal PSs in both orange juice and water significantly reduced LDL-C compared to their controls. Furthermore, the liposomal PS was as effective as a marketed PS-containing product in reducing LDL-C. Liposomal PSs in both orange juice and water showed similar efficacy in LDL-C reduction, highlighting that these vehicles/food matrices do not affect the efficacy of PSs. The liposomal formulation of a natural PS mixture extracted from canola oil, with brassicasterol as a major component, exhibited a significant LDL-C reduction in a hamster model.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Fitosteróis , Animais , LDL-Colesterol , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Lipossomos , Fitosteróis/farmacologia , Colesterol , Hipercolesterolemia/tratamento farmacológico , Dieta
3.
Anal Chim Acta ; 1194: 339404, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063161

RESUMO

Phytosterol oxidation products (POPs) formed by the auto-oxidation of phytosterols can lead to negative health consequences. New liquid chromatography-tandem mass spectrometry (LC-MS/MS) quantitative and qualitative approaches were developed. For quantification, sixteen phytosterol oxidation products (POPs) in liposomal formulations; namely 7-keto, 7-hydroxy, 5,6-epoxy, and 5,6-dihydroxy derivatives of brassicasterol, campesterol, stigmasterol, and ß-sitosterol were quantified. The method has a short run time of 5 min, achieved on a poroshell C18 column, using isocratic elution. To the best of our knowledge, this is the shortest run time among reported methods for the quantitative analysis of POPs. Atmospheric pressure chemical ionization (APCI) was used, and the mobile phase was composed of acetonitrile/methanol (99:1 v/v). The quantitative method was validated as per the FDA guidelines for linearity, accuracy, precision, selectivity, sensitivity, matrix effect, dilution integrity, and stability. The method was applied for the quantification of POPs in liposomal phytosterol formulations prepared with and without tocopherols, as antioxidants. The formulation process had little impact on the formation of POPs as only 7-ketobrassicasterol was quantified in tested samples. The quantified value of POPs in liposomal samples was insignificant to impart any toxicological effects. Other degradation products such as 7-hydroxy, 5,6-epoxy and 5,6-dihydroxy derivatives of brassicasterol, campesterol and ß-sitosterol were below the lower limit of quantification. Phytosterol-containing formulations were then assessed for their oxidative stability after microwave exposure for 5 min. The incorporation of tocopherols significantly increased the stability of phytosterols in the liposomal formulations. Finally, LC-MS/MS qualitative identification of phytosterols obtained from extra virgin olive oil was performed. New POPs, namely 7-ketoavenasterol, and 7-ketomethylenecycloartenol were putatively identified, illustrating the applicability of the method to identify POPs with varying structures present in various phytosterol sources. In fact, it is the first time that 7-ketomethylenecycloartenol is reported as a POP.


Assuntos
Fitosteróis , Óleos de Plantas , Cromatografia Líquida , Lipossomos , Extratos Vegetais , Espectrometria de Massas em Tandem
4.
Molecules ; 26(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807675

RESUMO

Phytosterols and tocopherols are commonly used in food and pharmaceutical industries for their health benefits. Current analysis methods rely on conventional liquid chromatography, using an analytical column, which can be tedious and time consuming. However, simple, and fast analytical methods can facilitate their qualitative and quantitative analysis. In this study, a fast chromatography-tandem mass spectrometric (FC-MS/MS) method was developed and validated for the quantitative analysis of phytosterols and tocopherols. Omitting chromatography by employing flow injection analysis-mass spectrometry (FIA-MS) failed in the quantification of target analytes due to analyte-to-analyte interferences from phytosterols. These interferences arise from their ambiguous MS fingerprints that would lead to false identification and inaccurate quantification. Therefore, a C18 guard column with a 1.9 µm particle size was employed for FC-MS/MS under isocratic elution using acetonitrile/methanol (99:1 v/v) at a flow rate of 600 µL/min. Analyte-to-analyte interferences were identified and eliminated. The false peaks could then be easily identified due to chromatographic separation. In addition, two internal standards were evaluated, namely cholestanol and deuterated cholesterol. Both internal standards contributed to the observed analyte-to-analyte interferences; however, adequate shift in the retention time for deuterated cholesterol eliminated its interferences and allowed for an accurate quantification. The method is fast (1.3 min) compared to published methods and can distinguish false peaks observed in FIA-MS. Seven analytes were quantified simultaneously, namely brassicasterol, campesterol, stigmasterol, ß-sitosterol, α-tocopherol, δ-tocopherol, and γ-tocopherol. The method was successfully applied in the quantitative analysis of phytosterols and tocopherols present in the unsaponifiable matter of canola oil deodorizer distillate (CODD). ß-sitosterol and γ-tocopherol were the most abundant phytosterols and tocopherols, respectively.


Assuntos
Cromatografia Líquida/métodos , Fitosteróis/análise , Espectrometria de Massas em Tandem/métodos , Tocoferóis/análise , Calibragem , Fracionamento Químico , Cromatografia Líquida/instrumentação , Fitosteróis/isolamento & purificação , Plantas/química , Reprodutibilidade dos Testes , Tocoferóis/isolamento & purificação
5.
Pharmaceutics ; 13(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669349

RESUMO

Phytosterols are a class of lipid molecules present in plants that are structurally similar to cholesterol and have been widely utilized as cholesterol-lowering agents. However, the susceptibility of phytosterols to oxidation has led to concerns regarding their safety and tolerability. Phytosterol oxidation products (POPs) present in a variety of enriched and non-enriched foods can show pro-atherogenic and pro-inflammatory properties. Therefore, it is crucial to screen and analyze various phytosterol-containing products for the presence of POPs and ultimately design or modify phytosterols in such a way that prevents the generation of POPs and yet maintains their pharmacological activity. The main approaches for the analysis of POPs include the use of mass spectrometry (MS) linked to a suitable separation technique, notably gas chromatography (GC). However, liquid chromatography (LC)-MS has the potential to simplify the analysis due to the elimination of any derivatization step, usually required for GC-MS. To reduce the transformation of phytosterols to their oxidized counterparts, formulation strategies can theoretically be adopted, including the use of microemulsions, microcapsules, micelles, nanoparticles, and liposomes. In addition, co-formulation with antioxidants, such as tocopherols, may prove useful in substantially preventing POP generation. The main objectives of this review article are to evaluate the various analytical strategies that have been adopted for analyzing them. In addition, formulation approaches that can prevent the generation of these oxidation products are proposed.

6.
Anal Chem ; 92(13): 8628-8637, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510944

RESUMO

Mass spectrometry (MS) in hyphenated techniques is widely accepted as the gold standard quantitative tool in life sciences. However, MS possesses intrinsic analytical capabilities that allow it to be a stand-alone quantitative technique, particularly with current technological advancements. MS has a great potential for simplifying quantitative analysis without the need for tedious chromatographic separation. Its selectivity relies on multistage MS analysis (MSn), including tandem mass spectrometry (MS/MS), as well as the ever-growing advancements of high-resolution MS instruments. This perspective describes various analytical platforms that utilize MS as a stand-alone quantitative technique, namely, flow injection analysis (FIA), matrix assisted laser desorption ionization (MALDI), including MALDI-MS imaging and ion mobility, particularly high-field asymmetric waveform ion mobility spectrometry (FAIMS). When MS alone is not capable of providing reliable quantitative data, instead of conventional liquid chromatography (LC)-MS, the use of a guard column (i.e., fast chromatography) may be sufficient for quantification. Although the omission of chromatographic separation simplifies the analytical process, extra procedures may be needed during sample preparation and clean-up to address the issue of matrix effects. The discussion of this manuscript focuses on key parameters underlying the uniqueness of each technique for its application in quantitative analysis without the need for a chromatographic separation. In addition, the potential for each analytical strategy and its challenges are discussed as well as improvements needed to render them as mainstream quantitative analytical tools. Overcoming the hurdles for fully validating a quantitative method will allow MS alone to eventually become an indispensable quantitative tool for clinical and toxicological studies.


Assuntos
Espectrometria de Massas/métodos , Colesterol/análogos & derivados , Colesterol/análise , Cromatografia Líquida de Alta Pressão , Análise de Injeção de Fluxo , Espectrometria de Mobilidade Iônica , Limite de Detecção , Fitosteróis/análise , Sitosteroides/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
J Pharm Biomed Anal ; 183: 113104, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32058287

RESUMO

A novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously quantify phytosterols (brassicasterol, campesterol, stigmasterol and ß-sitosterol) and tocopherols (alpha, beta, gamma and delta) entrapped in the lipid bilayer of a liposomal formulation. Apart from liposomes (a pharmaceutical product), the developed method was able to quantify target analytes in agricultural products, thus showing wide applications. Atmospheric pressure chemical ionization (APCI) was employed due to the enhanced ionization of phytosterols and tocopherols in comparison to electrospray ionization. Unlike published work, the chromatographic conditions were modified to simplify the analytical approach. For the first time, a simple isocratic elution (acetonitrile:methanol 99:1 v/v) was utilized for the separation of four phytosterols and four tocopherols in a single run. A substantially better baseline separation of phytosterols were obtained in comparison to reported methods by using poroshell C18 column. The method has a total run time of 7 min, which is the shortest run time among all reported quantitative methods for the simultaneous determination of four phytosterols and four tocopherols. Calibration curves for all phytosterols were linear in the range of 0.05-10 µg/mL. In the case of tocopherols, alpha tocopherol showed linear response in the range of 0.25-10 µg/mL. However, gamma and delta tocopherols exhibited quadratic relationship in the same concentration range (0.25-10 µg/mL). Validation parameters met the International Conference on Harmonization (ICH) guidelines in terms of selectivity, accuracy, precision, repeatability, sensitivity, matrix effects, dilution integrity and stability. The method was, for the first time, successfully applied for the quantifying phytosterols and tocopherols entrapped inside liposomes. An interesting chromatographic phenomenon was observed during sample analysis. Alpha tocopherol (entrapped in the liposomal lipid bilayer) was found to elute at two retention times, 2.53 min and 3.60 min. Such dual separation was not observed in calibration standards and quality controls. It was concluded that the chiral recognition ability of liposomes made up of phosphatidylcholine separated the enantiomers of alpha tocopherol, giving rise to two peaks at two different retention time. To sum, the reported novel LC-MS/MS method addresses three major analytical shortcomings, namely i)longer run time, ii)complex gradient elution and iii)poor baseline separation of phytosterols and tocopherols.


Assuntos
Lipossomos/química , Fitosteróis/química , Tocoferóis/química , Pressão Atmosférica , Calibragem , Colestadienóis/química , Colesterol/análogos & derivados , Colesterol/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Sitosteroides/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Estigmasterol/química , Espectrometria de Massas em Tandem/métodos
8.
J Am Soc Mass Spectrom ; 30(9): 1700-1712, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31111414

RESUMO

Phytosterols and tocopherols are essential for plant biochemistry, and they possess beneficial health effects for humans. Evaluating the tandem mass spectrometric (MS/MS) behavior of phytosterols and tocopherols is needed for the development of a qualitative and quantitative method for these biologically active plant metabolites. Herein, the MS/MS dissociation behavior of phytosterols and tocopherols is elucidated to establish generalized MS/MS fingerprints. MS/MS and multistage (MS3) analysis revealed common fragmentation behavior among the four tested phytosterols, namely ß-sitosterol, stigmasterol, campesterol, and brassicasterol. Similar analysis was conducted for the tocopherols (i.e., alpha (α), beta (ß), gamma (γ), and delta (δ)). As such, a universal MS/MS fragmentation pathway for each group was successfully established for the first time. Based on the generalized MS/MS fragmentation behavior of phytosterols, diagnostic product ions were chosen for the development of profiling methods for over 20 naturally occurring phytosterols. A precursor ion scan-triggered-enhanced product ion scan (PIS-EPI) method was established. Due to enhanced chromatographic peaks, multiple ion monitoring-triggered-enhanced product ion scan (MIM-EPI) was employed for confirmation. The screening approach was applied successfully to identify blinded samples obtained from standard mixtures as well as sesame and olive oils. The oil samples contain other phytosterols, and their successful identification indicates that, the generalized MS/MS fragmentation behavior is applicable to various structures of phytosterols. A similar approach was attempted for tocopherols and was only hindered by the low concentration of these bioactive metabolites present in the oil samples.


Assuntos
Fitosteróis/análise , Óleos de Plantas/análise , Óleos de Plantas/química , Espectrometria de Massas em Tandem/métodos , Tocoferóis/análise , Análise de Alimentos , Azeite de Oliva/análise , Azeite de Oliva/química , Fitosteróis/química , Óleo de Gergelim/análise , Óleo de Gergelim/química , Tocoferóis/química
9.
Pharmaceutics ; 11(4)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995762

RESUMO

Phytosterols are plant sterols recommended as adjuvant therapy for hypercholesterolemia and tocopherols are well-established anti-oxidants. However, thermo-sensitivity, lipophilicity and formulation-dependent efficacy bring challenges in the development of functional foods, enriched with phytosterols and tocopherols. To address this, we developed liposomes containing brassicasterol, campesterol and ß-sitosterol obtained from canola oil deodorizer distillate, along with alpha, gamma and delta tocopherol. Three approaches; thin film hydration-homogenization, thin film hydration-ultrasonication and Mozafari method were used for formulation. Validated liquid chromatographic tandem mass spectrometry (LC-MS/MS) was utilized to determine the entrapment efficiency of bioactives. Stability studies of liposomal formulations were conducted before and after pasteurization using high temperature short time (HTST) technique for a month. Vesicle size after homogenization and ultrasonication (<200 nm) was significantly lower than by Mozafari method (>200 nm). However, zeta potential (-9 to -14 mV) was comparable which was adequate for colloidal stability. Entrapment efficiencies were greater than 89% for all the phytosterols and tocopherols formulated by all three methods. Liposomes with optimum particle size and zeta potential were incorporated in model orange juice, showing adequate stability after pasteurization (72 °C for 15 s) for a month. Liposomes containing phytosterols obtained from canola waste along with tocopherols were developed and successfully applied as a food additive using model orange juice.

10.
J Agric Food Chem ; 65(47): 10141-10156, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29058915

RESUMO

Plant sterols (phytosterols) are important structural components of plant cellular membranes, and they play a major role during development and metabolism. They have health-associated benefits, especially in lowering blood cholesterol levels. Because of their many health claims, there is a growing interest in their analysis. Although various analytical strategies have been employed in analyzing phytosterols, chromatography linked to mass spectrometry (MS) is superior due to its sensitivity. Furthermore, specificity and selectivity are enhanced by utilizing tandem mass spectrometry (MS/MS). This article reviews the various mass spectrometric strategies used for the analysis of phytosterols. It highlights the applications and limitations associated with each MS strategy in various sample matrixes such as plant, human, animal, food, and dietary supplements. GC-MS was historically the method of choice for analysis; however, the derivatization step rendered it tedious and time-consuming. On the other hand, liquid chromatography coupled to MS (LC-MS) simplifies the analysis. Many ionization techniques have been used, namely, electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI). APCI showed superiority in terms of ion intensity and consistency in ion formation, primarily forming [M + H - H2O]+ ions rather than [M + H]+. In addition, matrix assisted laser desorption ionization (MALDI) as well as ambient mass spectrometry such as direct analysis in real time (DART) have also been evaluated.


Assuntos
Análise de Alimentos/métodos , Espectrometria de Massas/métodos , Fitosteróis/química , Extratos Vegetais/química , Animais , Humanos , Fitosteróis/isolamento & purificação , Extratos Vegetais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA