Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38325903

RESUMO

BACKGROUND: The paucity of tumor-specific targets for chimeric antigen receptor (CAR) T-cell therapy of solid tumors necessitates careful preclinical evaluation of the therapeutic window for candidate antigens. Human epidermal growth factor receptor 2 (HER2) is an attractive candidate for CAR T-cell therapy in humans but has the potential for eliciting on-target off-tumor toxicity. We developed an immunocompetent tumor model of CAR T-cell therapy targeting murine HER2 (mHER2) and examined the effect of CAR affinity, T-cell dose, and lymphodepletion on safety and efficacy. METHODS: Antibodies specific for mHER2 were generated, screened for affinity and specificity, tested for immunohistochemical staining of HER2 on normal tissues, and used for HER2-targeted CAR design. CAR candidates were evaluated for T-cell surface expression and the ability to induce T-cell proliferation, cytokine production, and cytotoxicity when transduced T cells were co-cultured with mHER2+ tumor cells in vitro. Safety and efficacy of various HER2 CARs was evaluated in two tumor models and normal non-tumor-bearing mice. RESULTS: Mice express HER2 in the same epithelial tissues as humans, rendering these tissues vulnerable to recognition by systemically administered HER2 CAR T cells. CAR T cells designed with single-chain variable fragment (scFvs) that have high-affinity for HER2 infiltrated and caused toxicity to normal HER2-positive tissues but exhibited poor infiltration into tumors and antitumor activity. In contrast, CAR T cells designed with an scFv with low-affinity for HER2 infiltrated HER2-positive tumors and controlled tumor growth without toxicity. Toxicity mediated by high-affinity CAR T cells was independent of tumor burden and correlated with proliferation of CAR T cells post infusion. CONCLUSIONS: Our findings illustrate the disadvantage of high-affinity CARs for targets such as HER2 that are expressed on normal tissues. The use of low-affinity HER2 CARs can safely regress tumors identifying a potential path for therapy of solid tumors that exhibit high levels of HER2.


Assuntos
Imunoterapia Adotiva , Linfócitos T , Camundongos , Humanos , Animais , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Camundongos Endogâmicos
2.
Cancer Prev Res (Phila) ; 15(4): 225-231, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34987061

RESUMO

Colon cancer is initiated under inflammatory conditions associated with upregulation of immune checkpoint proteins. We evaluated immune modulation induced by nonsteroidal anti-inflammatory agents used for colon cancer prevention. Both celecoxib and naproxen inhibited polyp growth in APC Min mice. Treatment of mice with either drug significantly decreased PD-L1 expression on polyps in a dose-dependent manner (P < 0.0001 for both). The decrease in PD-L1 was associated with an influx of CD8+ T cells into polyps (P < 0.0001, celecoxib; P = 0.048, naproxen) compared with lesions from untreated animals and correlated with disease control. Naproxen is a nonselective inhibitor of both COX-1 and COX-2, and we questioned the role of the different cyclooxygenases in PD-L1 regulation. Silencing either COX-2 or COX-1 RNA in the murine colon cancer cell line MC38, reduced PD-L1 expression by 86% in COX-2-silenced cells (P < 0.0001) while there was little effect with COX-1 siRNA compared with control. Naproxen could inhibit the growth of MC38 in vivo. Naproxen-treated mice demonstrated a significant reduction in MC38 growth as compared with control (P < 0001). Both Tbet+ CD4 and CD8 tumor-infiltrating lymphocytes (TIL) were significantly increased (P = 0.04 and P = 0.038, respectively) without a concurrent increase in GATA3+ TIL (P > 0.05). CD8+ TIL highly expressed the activation marker, CD69. Not only was PD-L1 expression decreased on tumors, but LAG3+CD8+ T cells and PD-1 and LAG3 expression on regulatory T cells was also reduced (P = 0.008 and P = 0.002, respectively). These data demonstrate COX-2 inhibitors significantly decrease PD-L1 in colonic lesions and favorably impact the phenotype of tumor-infiltrating lymphocytes to control tumor growth. PREVENTION RELEVANCE: Nonsteroidal anti-inflammatories (NSAID) are an essential component of any combination chemoprevention of colon cancer. We show NSAID treatment reduces PD-L1 expression on intestinal tumor cells. NSAID regulation of PD-L1 is dependent on COX-2 expression. These data underscore an important immunologic mechanism of action for NSAID in colon cancer prevention. See related Spotlight, p. 209.


Assuntos
Neoplasias do Colo , Linfócitos do Interstício Tumoral , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/prevenção & controle , Inibidores de Ciclo-Oxigenase 2/farmacologia , Camundongos
3.
Mol Cancer Ther ; 19(5): 1102-1109, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32165557

RESUMO

2-fluorofucose (2FF) inhibits protein and cellular fucosylation. Afucosylation of IgG antibodies enhances antibody-dependent cell-mediated cytotoxicity by modulating antibody affinity for FcγRIIIa, which can impact secondary T-cell activation. Immune responses toward most common solid tumors are dominated by a humoral immune response rather than the presence of tumor-infiltrating cytotoxic T cells. IgG antibodies directed against numerous tumor-associated proteins are found in the sera of both patients with breast cancer and transgenic mice bearing mammary cancer. We questioned whether 2FF would have antitumor activity in two genetically distinct transgenic models; TgMMTV-neu (luminal B) and C3(1)-Tag (basal) mammary cancer. 2FF treatment significantly improved overall survival. The TgMMTV-neu doubled survival time compared with controls [P < 0.0001; HR, 7.04; 95% confidence interval (CI), 3.31-15.0], and survival was significantly improved in C3(1)-Tag (P = 0.0013; HR, 3.36; 95% CI, 1.58-7.14). 2FF treated mice, not controls, developed delayed-type hypersensitivity and T-cell responses specific for syngeneic tumor lysates (P < 0.0001). Serum IgG from 2FF-treated mice enhanced tumor lysis more efficiently than control sera (P = 0.004). Administration of 2FF for prophylaxis, at two different doses, significantly delayed tumor onset in both TgMMTV-neu; 20 mmol/L (P = 0.0004; HR, 3.55; 95% CI, 1.60-7.88) and 50 mmol/L (P = 0.0002; HR: 3.89; 95% CI, 1.71-8.86) and C3(1)-Tag; 20 mmol/L (P = 0.0020; HR, 2.51; 95% CI, 1.22-5.18), and 50 mmol/L (P = 0.0012; HR, 3.36; 95% CI, 1.57-7.18). Mammary cancer was prevented in 33% of TgMMTV-neu and 26% of C3(1)-Tag. 2FF has potent antitumor effects in mammary cancer models. The agent shows preclinical efficacy for both cancer treatment and prevention.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Fucose/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Apoptose , Proliferação de Células , Feminino , Fucose/administração & dosagem , Glicosilação , Humanos , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Células Tumorais Cultivadas
4.
Cancer Prev Res (Phila) ; 12(8): 507-516, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31101634

RESUMO

In order to translate new treatments to the clinic, it is necessary to use animal models that closely recapitulate human disease. Lung cancer develops after extended exposure to carcinogens. It has one of the highest mutation rates of all cancer and is highly heterogenic. Topical treatment with N-nitrosotris-(2-chloroethyl)urea (NTCU) induces lung squamous cell carcinoma (SCC) with nonsynonymous mutation rates similar to those reported for human non-small cell lung cancer. However, NTCU induces lung cancer with variable efficacy and toxicity depending on the mouse strain. A detailed characterization of the NTCU model is needed. We have compared the effect of three different NTCU doses (20, 30, and 40 mmol/L) in female and male of NIH Swiss, Black Swiss, and FVB mice on tumor incidence, survival, and toxicity. The main findings in this study are (1) NIH Swiss mice present with a higher incidence of SCC and lower mortality compared with Black Swiss and FVB mice; (2) 30 mmol/L NTCU dose induces SCC at the same rate and incidence as the 40 mmol/L dose with lower mortality; (3) female mice present higher grade and incidence of preinvasive lesions and SCC compared with males; (4) NTCU-induced transformation is principally within the respiratory system; and (5) NTCU treatment does not affect the ability to elicit a specific adaptive immune response. This study provides a reference point for experimental designs to evaluate either preventive or therapeutic treatments for lung SCC, including immunotherapies, before initiating human clinical trials.


Assuntos
Carcinógenos/toxicidade , Carcinoma de Células Escamosas/epidemiologia , Neoplasias Pulmonares/epidemiologia , Pulmão/patologia , Animais , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/patologia , Carmustina/análogos & derivados , Carmustina/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Relação Dose-Resposta a Droga , Feminino , Incidência , Pulmão/efeitos dos fármacos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/epidemiologia , Neoplasias Experimentais/patologia , Fatores de Risco , Fatores Sexuais
5.
J Immunother Cancer ; 3: 16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25992288

RESUMO

BACKGROUND: Ovarian cancer is immunogenic and residual tumor volume after surgery is known to be prognostic. Ovarian cancer often follows a recurring-remitting course and microscopic disease states may present ideal opportunities for immune therapies. We sought to establish the immune profile of a murine model of ovarian cancer that allows in vivo tumor imaging and the quantitation of microscopic disease. RESULTS AND DISCUSSION: Baseline imaging and weight measurements were taken within 1 and 2 weeks after intraperitoneal tumor injection, respectively. Significantly higher photons per second from baseline imaging were first observed 5 weeks after tumor cell injection (p < 0.05) and continued to be significant through 8 weeks after injection (p < 0.01), whereas a significant increase in weight above baseline was not observed until day 56 (p < 0.0001). Expression of luc2 in ID8 cells did not alter the cellular immune microenvironment of the tumor. FOXP3+ T cells were more likely to be detected in the intraepithelial compartment and CD4+ T cells in the stroma as compared to CD3+ T cells, which were found equally in stroma and intraepithelial compartments. CONCLUSIONS: Use of an intraperitoneal tumor expressing a codon-optimized firefly luciferase in an immunocompetent mouse model allows tumor quantitation in vivo and detection of microscopic tumor burdens. Expression of this foreign protein does not significantly effect tumor engraftment or the immune microenvironment of the ID8 cells in vivo and may allow novel immunotherapies to be assessed in a murine model for their translational potential to ovarian cancers in remission or minimal disease after primary cytoreductive surgery or chemotherapy. METHODS: Mouse ovarian surface epithelial cells from C57BL6 mice transformed after serial passage in vitro were transduced with a lentiviral vector expressing a codon optimized firefly luciferase (luc2). Cell lines were selected and luc2 expression functionally confirmed in vitro. Cell lines were intraperitoneally (IP) implanted in albino C57BL/6/BrdCrHsd-Tyrc mice and albino B6(Cg)-Tyrc-2 J/J mice for serial imaging. D-luciferin substrate was injected IP and tumors were serially imaged in vivo using a Xenogen IVIS. Tumor take, weights, and luminescent intensities were measured. Immunohistochemistry was performed on tumors and assessed for immune infiltrates in stromal and intraepithelial compartments.

6.
Blood ; 111(3): 1472-9, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18029553

RESUMO

Studies have shown that the immune system can recognize self-antigens under conditions (eg, cell injury) in which the self-tissue might elaborate immune-activating endogenous danger signals. Uric acid (UA) is an endogenous danger signal recently identified to be released from dying cells. Prior work has shown that UA activates immune effectors of both the innate and adaptive immune system, including neutrophils and cytotoxic T-cell immunity. However, it was unclear whether UA could enhance antibody immunity, which was examined in this study. When added to dying tumor cells or with whole protein antigen, UA increased IgG1-based humoral immunity. Further, UA blocked growth of tumor in subsequent tumor challenge experiments, which depended on CD4, but not CD8, T cells. Sera derived from UA-treated animals enhanced tumor growth, suggesting it had little role in the antitumor response. UA did not signal for T-cell expansion or altered tumor-infiltrating leukocyte populations. Consistent with the lack of T-cell expansion, when applied to dendritic cells, UA suppressed T-cell growth factors but up-regulated B cell-activating cytokines. Understanding the nature of endogenous danger signals released from dying cells may aid in a better understanding of mechanisms of immune recognition of self.


Assuntos
Anticorpos/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Ácido Úrico/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Cristalização , Interleucina-5/farmacologia , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Camundongos , Neoplasias/imunologia , Neoplasias/patologia
7.
J Immunol ; 177(3): 1526-33, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16849459

RESUMO

Tumors evade both natural and pharmacologically induced (e.g., vaccines) immunity by a variety of mechanisms, including induction of tolerance and immunoediting. Immunoediting results in reshaping the immunogenicity of the tumor, which can be accompanied by loss of Ag expression and MHC molecules. In this study, we evaluated immunoediting in the neu-transgenic mouse model of breast cancer. A tumor cell line that retained expression of rat neu was generated from a spontaneous tumor of the neu-transgenic mouse and, when injected into the non-transgenic parental FVB/N mouse, resulted in the development of a strong immune response, initial rejection, and ultimately the emergence of neu Ag-loss variants. Morphologic and microarray data revealed that the immunoedited tumor cells underwent epithelial to mesenchymal transition accompanied by an up-regulation of invasion factors and increased invasiveness characteristic of mesenchymal tumor cells. These results suggest that immunoediting of tumor results in cellular reprogramming may be accompanied by alterations in tumor characteristics including increased invasive potential. Understanding the mechanisms by which tumors are immunoedited will likely lead to a better understanding of how tumors evade immune detection.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/patologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Mesoderma/imunologia , Mesoderma/patologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular Tumoral , Variação Genética , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Imunofenotipagem , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Invasividade Neoplásica/genética , Invasividade Neoplásica/imunologia , Transplante de Neoplasias/imunologia , Receptor ErbB-2/biossíntese , Receptor ErbB-2/genética , Evasão Tumoral/genética , Evasão Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA