Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 42: 108144, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35479421

RESUMO

This Data in Brief paper comprises dataset obtained for sediment cores collected from Lake Selina, located in the West Coast Range of Tasmania, Australia. Datasets include radiocarbon and optically stimulated luminescence age estimates, elemental composition, beryllium isotopes, magnetic properties and the paleomagnetic record measured on the cores assigned as TAS1402 (Location: Tasmania, Year: 2014, Site number: 02). The multi-proxy dataset was used to develop a chronostratigraphy for the 5.5 m and 270,000 year old record. See Lisé-Pronovost et al. (2021) (10.1016/j.quageo.2021.101152) for interpretation and discussion. The data presented in this study serve as an archive for future studies focusing on Earth system dynamics and the timeline and linkages of environmental changes across Tasmania, the Southern Hemisphere and at a global scale.

2.
PLoS One ; 14(10): e0224011, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31647825

RESUMO

Floodplain wetland ecosystems respond dynamically to flooding, fire and geomorphological processes. We employed a combined geomorphological and environmental proxy approach to assess allochthonous and autochthonous macro-charcoal accumulation in the Macquarie Marshes, Australia, with implications for the reconstruction of fire regimes and environmental conditions in large, open-system wetlands. After accounting for fluvial macro-charcoal flux (1.05 ± 0.32 no. cm-2 a-1), autochthonous macro-charcoal in ~1 m deep sediment profiles spanning ~1.7 ka were highly variable and inconsistent between cores and wetlands (concentrations from 0 to 438 no. cm-3, mean accumulation rates from 0 to 3.86 no. cm-2 a-1). A positive correlation existed between the number of recent fires, satellite-observed ignition points, and macro-charcoal concentrations at the surface of the wetlands. Sedimentology, geochemistry, and carbon stable isotopes (δ13C range -15 to -25 ‰) were similar in all cores from both wetlands and varied little with depth. Application of macro-charcoal and other environmental proxy techniques is inherently difficult in large, dynamic wetland systems due to variations in charcoal sources, sediment and charcoal deposition rates, and taphonomic processes. Major problems facing fire history reconstruction using macro-charcoal records in these wetlands include: (1) spatial and temporal variations in fire activity and ash and charcoal products within the wetlands, (2) variations in allochthonous inputs of charcoal from upstream sources, (3) tendency for geomorphic dynamism to affect flow dispersal and sediment and charcoal accumulation, and (4) propensity for post-depositional modification and/or destruction of macro-charcoal by flooding and taphonomic processes. Recognition of complex fire-climate-hydrology-vegetation interactions is essential. High-resolution, multifaceted approaches with reliable geochronologies are required to assess spatial and temporal patterns of fire and to reconstruct in order to interpret wetland fire regimes.


Assuntos
Carvão Vegetal/análise , Ecossistema , Meio Ambiente , Incêndios , Inundações/estatística & dados numéricos , Sedimentos Geológicos/análise , Áreas Alagadas
3.
Sci Total Environ ; 672: 427-437, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30965258

RESUMO

Tidal marsh ecosystems are among earth's most efficient natural organic carbon (C) sinks and provide myriad ecosystem services. However, approximately half have been 'reclaimed' - i.e. converted to other land uses - potentially turning them into sources of greenhouse gas emissions. In this study, we applied C stock measurements and paleoanalytical techniques to sediments from reclaimed and intact tidal marshes in southeast Australia. We aimed to assess the impacts of reclamation on: 1) the magnitude of existing sediment C stocks; 2) ongoing C sequestration and storage; and 3) C quality. Differences in sediment horizon depths (indicated by Itrax-XRF scanning) and ages (indicated by lead-210 and radiocarbon dating) suggest a physical loss of sediments following reclamation, as well as slowing of sediment accumulation rates. Sediments at one meter depth were between ~2000 and ~5300 years older in reclaimed cores compared to intact marsh cores. We estimate a 70% loss of sediment C in reclaimed sites (equal to 73 Mg C ha-1), relative to stocks in intact tidal marshes during a comparable time period. Following reclamation, sediment C was characterized by coarse particulate organic matter with lower alkyl-o-alkyl ratios and higher amounts of aromatic C, suggesting a lower extent of decomposition and therefore lower likelihood of being incorporated into long-term C stocks compared to that of intact tidal marshes. We conclude that reclamation of tidal marshes can diminish C stocks that have accumulated over millennial time scales, and these losses may go undetected if additional analyses are not employed in conjunction with C stock estimates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA