Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377454

RESUMO

Chronic pain affects a substantial portion of the population, posing a significant health challenge. Current treatments often come with limitations and side effects, necessitating novel therapeutic approaches. Our study focuses on disrupting the Cav3.2-USP5 interaction as a strategy for chronic pain management. Through structure-activity relationship studies of a tetrahydroquinoline (THQ) scaffold, we identified a family of lead molecules that demonstrated potent inhibition of the Cav3.2-USP5 interaction. In vitro pharmacokinetic assessments and in vivo studies support the efficacy and drug-like properties of the lead compounds in mouse models of acute and chronic pain. Dependence on the Cav3.2 channels was validated in Cav3.2 null mice, consistent with the proposed mode of action of these small molecules. These findings provide a novel chronic pain treatment strategy, highlighting the potential of these small molecules for further development.

2.
Br J Pharmacol ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39295452

RESUMO

BACKGROUND AND PURPOSE: The chemotherapy agent oxaliplatin can give rise to oxaliplatin-induced peripheral neuropathy (OIPN). Here, we investigated whether T-type calcium channels (Cav3) contribute to OIPN. EXPERIMENTAL APPROACH: We chronically treated mice with oxaliplatin and assessed pain responses and changes in expression of Cav3.2 calcium channels. We also tested the effects of T-type channel blockers on cold sensitivity in wild-type and Cav3.2 null mice. KEY RESULTS: Oxaliplatin treatment led to mechanical and cold hypersensitivity in male and female mice. Mechanical hypersensitivity persisted in Cav3.2 null mice of both sexes. Intraperitoneal or intrathecal delivery of pan T-type channel inhibitors attenuated mechanical hypersensitivity in wild-type but not Cav3.2 null mice. Remarkably cold hypersensitivity occurred in female but not male Cav3.2 null mice even without oxaliplatin treatment. Unexpectedly, intrathecal, intraplantar or intraperitoneal delivery of T-type channel inhibitors Z944 or TTA-P2 transiently induced cold hypersensitivity in both male and female wild-type mice. Acute knockdown of specific Cav3 isoforms revealed that the depletion of Cav3.1 in males and depletion of either Cav3.1 or Cav3.2 in females triggered cold hypersensitivity. Finally, reducing Cav3.2 expression by disrupting the interactions between Cav3.2 and the deubiquitinase USP5 with the small organic molecule II-2 reversed oxaliplatin-induced mechanical and cold hypersensitivity and importantly did not trigger cold allodynia. CONCLUSION AND IMPLICATIONS: Altogether, our data indicate that T-type channels differentially contribute to the regulation of cold and mechanical hypersensitivity, and raise the possibility that T-type channel blockers could promote cold allodynia.

3.
Front Integr Neurosci ; 17: 1242278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901799

RESUMO

Objective: This study evaluated the antihyperalgesic and anti-inflammatory effects of percutaneous vagus nerve electrical stimulation (pVNS) associated with physical exercise, i.e., swimming, in mice with peripheral inflammation. Methods: The pain model was induced by intraplantar (i.pl.) injection of Freund's complete adjuvant (CFA). Sixty-four male Swiss mice (35-40 g) received an i.pl. of CFA and underwent behavioral tests, i.e., mechanical hyperalgesia, edema, and paw temperature tests. Additionally, cytokine levels, specifically interleukin-6 (IL-6) and interleukin-10 (IL-10), were determined by enzyme-linked immunosorbent assay. Mice were treated with swimming exercise for 30 min alone or associated with different time protocols (10, 20, or 30 min) of stimulation in the left ear with random frequency during four consecutive days. Results: pVNS for 20 min prolonged the antihyperalgesic effect for up to 2 h, 24 h after CFA injection. pVNS for 30 min prolonged the antihyperalgesic effect for up to 7 h, 96 h after CFA injection. However, it did not alter the edema or temperature at both analyzed times (24 and 96 h). Furthermore, the combination of pVNS plus swimming exercise, but not swimming exercise alone, reduced IL-6 levels in the paw and spinal cord, as well as IL-10 levels in the spinal cord. Conclusion: pVNS potentiates the analgesic effect induced by swimming, which may be, at least in part, mediated by the modulation of inflammatory cytokines in the periphery (paw) and central nervous system (spinal cord). Therefore, the combination of these therapies may serve as an important adjunctive treatment for persistent inflammatory pain.

4.
Mol Brain ; 16(1): 60, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464359

RESUMO

The present study was undertaken to explore the relative contributions of Cav3.2 T-type channels to mediating the antihyperalgesic activity of joint manipulation (JM) therapy. We used the chronic constriction injury model (CCI) to induce peripheral neuropathy and chronic pain in male mice, followed by JM. We demonstrate that JM produces long-lasting mechanical anti-hyperalgesia that is abolished in Cav3.2 null mice. Moreover, we found that JM displays a similar analgesic profile as the fatty acid amide hydrolase inhibitor URB597, suggesting a possible converging mechanism of action involving endocannabinoids. Overall, our findings advance our understanding of the mechanisms through which JM produces analgesia.


Assuntos
Analgesia , Canais de Cálcio Tipo T , Camundongos , Masculino , Animais , Dor , Hiperalgesia/complicações , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Canais de Cálcio Tipo T/metabolismo
5.
ACS Chem Neurosci ; 14(10): 1859-1869, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37116219

RESUMO

Cav3.2 channels play an important role in the afferent nociceptive pathway, which is responsible for both physiological and pathological pain transmission. Cav3.2 channels are upregulated during neuropathic pain or peripheral inflammation in part due to an increased association with the deubiquitinase USP5. In this study, we investigated nine naturally occurring flavonoid derivatives which we tested for their abilities to inhibit transiently expressed Cav3.2 channels and their interactions with USP5. Icariside II (ICA-II), one of the flavonols studied, inhibited the biochemical interactions between USP5 and Cav3.2 and concomitantly and effectively blocked Cav3.2 channels. Molecular docking analysis predicts that ICA-II binds to the cUBP domain and the Cav3.2 interaction region. In addition, ICA-II was predicted to interact with residues in close proximity to the Cav3.2 channel's fenestrations, thus accounting for the observed blocking activity. In mice with inflammatory and neuropathic pain, ICA-II inhibited both phases of the formalin-induced nocifensive responses and abolished thermal hyperalgesia induced by injection of complete Freund's adjuvant (CFA) into the hind paw. Furthermore, ICA-II produced significant and long-lasting thermal anti-hyperalgesia in female mice, whereas Cav3.2 null mice were resistant to the action of ICA-II. Altogether, our data show that ICA-II has analgesic activity via an action on Cav3.2 channels.


Assuntos
Canais de Cálcio Tipo T , Neuralgia , Feminino , Camundongos , Animais , Canais de Cálcio Tipo T/metabolismo , Simulação de Acoplamento Molecular , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Hiperalgesia/metabolismo , Flavonoides , Flavonóis , Camundongos Knockout , Proteases Específicas de Ubiquitina/metabolismo
6.
Br J Pharmacol ; 180(12): 1616-1633, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36647671

RESUMO

BACKGROUND AND PURPOSE: Cannabinoids are a promising therapeutic avenue for chronic pain. However, clinical trials often fail to report analgesic efficacy of cannabinoids. Inhibition of voltage gate calcium (Cav ) channels is one mechanism through which cannabinoids may produce analgesia. We hypothesized that cannabinoids and cannabinoid receptor agonists target different types of Cav channels through distinct mechanisms. EXPERIMENTAL APPROACH: Electrophysiological recordings from tsA-201 cells expressing either Cav 3.2 or Cav 2.2 were used to assess inhibition by HU-210 or cannabidiol (CBD) in the absence and presence of the CB1 receptor. Homology modelling assessed potential interaction sites for CBD in both Cav 2.2 and Cav 3.2. Analgesic effects of CBD were assessed in mouse models of inflammatory and neuropathic pain. KEY RESULTS: HU-210 (1 µM) inhibited Cav 2.2 function in the presence of CB1 receptor but had no effect on Cav 3.2 regardless of co-expression of CB1 receptor. By contrast, CBD (3 µM) produced no inhibition of Cav 2.2 and instead inhibited Cav 3.2 independently of CB1 receptors. Homology modelling supported these findings, indicating that CBD binds to and occludes the pore of Cav 3.2, but not Cav 2.2. Intrathecal CBD alleviated thermal and mechanical hypersensitivity in both male and female mice, and this effect was absent in Cav 3.2 null mice. CONCLUSION AND IMPLICATIONS: Our findings reveal differential modulation of Cav 2.2 and Cav 3.2 channels by CB1 receptors and CBD. This advances our understanding of how different cannabinoids produce analgesia through action at different voltage-gated calcium channels and could influence the development of novel cannabinoid-based therapeutics for treatment of chronic pain.


Assuntos
Canabidiol , Canabinoides , Dor Crônica , Masculino , Feminino , Camundongos , Animais , Canabidiol/farmacologia , Canais de Cálcio , Dor Crônica/tratamento farmacológico , Analgésicos/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
7.
J Clin Invest ; 132(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35608912

RESUMO

The anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase known for its oncogenic potential that is involved in the development of the peripheral and central nervous system. ALK receptor ligands ALKAL1 and ALKAL2 were recently found to promote neuronal differentiation and survival. Here, we show that inflammation or injury enhanced ALKAL2 expression in a subset of TRPV1+ sensory neurons. Notably, ALKAL2 was particularly enriched in both mouse and human peptidergic nociceptors, yet weakly expressed in nonpeptidergic, large-diameter myelinated neurons or in the brain. Using a coculture expression system, we found that nociceptors exposed to ALKAL2 exhibited heightened excitability and neurite outgrowth. Intraplantar CFA or intrathecal infusion of recombinant ALKAL2 led to ALK phosphorylation in the lumbar dorsal horn of the spinal cord. Finally, depletion of ALKAL2 in dorsal root ganglia or blocking ALK with clinically available compounds crizotinib or lorlatinib reversed thermal hyperalgesia and mechanical allodynia induced by inflammation or nerve injury, respectively. Overall, our work uncovers the ALKAL2/ALK signaling axis as a central regulator of nociceptor-induced sensitization. We propose that clinically approved ALK inhibitors used for non-small cell lung cancer and neuroblastomas could be repurposed to treat persistent pain conditions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Citocinas/metabolismo , Neoplasias Pulmonares , Animais , Humanos , Hiperalgesia/metabolismo , Inflamação/patologia , Ligantes , Camundongos , Dor/tratamento farmacológico , Receptores Proteína Tirosina Quinases , Células Receptoras Sensoriais/metabolismo , Corno Dorsal da Medula Espinal/patologia
8.
ACS Chem Neurosci ; 13(4): 524-536, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35113527

RESUMO

Cav3.2 calcium channels are important mediators of nociceptive signaling in the primary afferent pain pathway, and their expression is increased in various rodent models of chronic pain. Previous work from our laboratory has shown that this is in part mediated by an aberrant expression of deubiquitinase USP5, which associates with these channels and increases their stability. Here, we report on a novel bioactive rhodanine compound (II-1), which was identified in compound library screens. II-1 inhibits biochemical interactions between USP5 and the Cav3.2 domain III-IV linker in a dose-dependent manner, without affecting the enzymatic activity of USP5. Molecular docking analysis reveals two potential binding pockets at the USP5-Cav3.2 interface that are distinct from the binding site of the deubiquitinase inhibitor WP1130 (a.k.a. degrasyn). With an understanding of the ability of some rhodanines to produce false positives in high-throughput screening, we have conducted several orthogonal assays to confirm the validity of this hit, including in vivo experiments. Intrathecal delivery of II-1 inhibited both phases of formalin-induced nocifensive behaviors in mice, as well as abolished thermal hyperalgesia induced by the delivery of complete Freund's adjuvant (CFA) to the hind paw. The latter effects were abolished in Cav3.2 null mice, thus confirming that Cav3.2 is required for the action of II-1. II-1 also mediated a robust inhibition of mechanical allodynia induced by injury to the sciatic nerve. Altogether, our data uncover a novel class of analgesics─well suited to rapid structure-activity relationship studies─that target the Cav3.2/USP5 interface.


Assuntos
Analgésicos , Canais de Cálcio Tipo T , Neuralgia , Proteases Específicas de Ubiquitina , Analgésicos/farmacologia , Animais , Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo T/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Neuralgia/metabolismo , Relação Estrutura-Atividade , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/metabolismo
9.
Mol Brain ; 14(1): 166, 2021 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-34775970

RESUMO

T-type calcium channels are known molecular targets of certain phytocannabinoids and endocannabinoids. Here we explored the modulation of Cav3.2 T-type calcium channels by terpenes derived from cannabis plants. A screen of eight commercially available terpenes revealed that camphene and alpha-bisabolol mediated partial, but significant inhibition of Cav3.2 channels expressed in tsA-201 cells, as well as native T-type channels in mouse dorsal root ganglion neurons. Both compounds inhibited peak current amplitude with IC50s in the low micromolar range, and mediated an additional small hyperpolarizing shift in half-inactivation voltage. When delivered intrathecally, both terpenes inhibited nocifensive responses in mice that had received an intraplantar injection of formalin, with alpha-bisabolol showing greater efficacy. Both terpenes reduced thermal hyperalgesia in mice injected with Complete Freund's adjuvant. This effect was independent of sex, and absent in Cav3.2 null mice, indicating that these compounds mediate their analgesic properties by acting on Cav3.2 channels. Both compounds also inhibited mechanical hypersensitivity in a mouse model of neuropathic pain. Hence, camphene and alpha-bisabolol have a wide spectrum of analgesic action by virtue of inhibiting Cav3.2 T-type calcium channels.


Assuntos
Canais de Cálcio Tipo T , Neuralgia , Animais , Monoterpenos Bicíclicos/farmacologia , Hiperalgesia , Camundongos , Sesquiterpenos Monocíclicos , Neuralgia/tratamento farmacológico , Terpenos/farmacologia , Terpenos/uso terapêutico
10.
Mol Brain ; 14(1): 46, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653383

RESUMO

We have recently reported that the Cav3.2 T-type calcium channel which is well known for its key role in pain signalling, also mediates a critical function in the transmission of itch/pruritus. Here, we evaluated the effect of the clinically used anti-seizure medication ethosuximide, a well known inhibitor of T-type calcium channels, on male and female mice subjected to histaminergic- and non-histaminergic itch. When delivered intraperitoneally ethosuximide significantly reduced scratching behavior of mice of both sexes in response to subcutaneous injection of either histamine or chloroquine. When co-delivered subcutaneously together with either pruritogenic agent ethosuximide was also effective in inhibiting scratching responses in both male and female animals. Overall, our results are consistent with an important role of Cav3.2 T-type calcium channels in modulating histamine-dependent and histamine-independent itch transmission in the primary sensory pathway. Our findings also suggest that ethosuximide could be explored further as a possible therapeutic for the treatment of itch.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cloroquina/efeitos adversos , Etossuximida/farmacologia , Histamina/efeitos adversos , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Prurido/induzido quimicamente
11.
Mol Brain ; 14(1): 35, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596932

RESUMO

Pathogen infection triggers pain via activation of the innate immune system. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are the main components of innate immunity and have been implicated in pain signaling. We previously revealed that the TLR2-NLRP3-IL33 pathway mediates inflammatory pain responses during hyperactivity of innate immunity. However, their roles in neuropathic pain had remained unclear. Here we report that although knockout of TLR2 or NLRP3 does not affect spared nerve injury (SNI)-induced neuropathic pain, intrathecal inhibition of IL33/ST2 signaling with ST2 neutralizing antibodies reverses mechanical thresholds in SNI mice compared to PBS vehicle treated animals. This effect indicates a universal role of IL33 in both inflammatory and neuropathic pain states, and that targeting the IL33/ST2 axis could be a potential therapeutic approach for pain treatment.


Assuntos
Hipersensibilidade/complicações , Hipersensibilidade/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Neuralgia/complicações , Neuralgia/metabolismo , Animais , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Tecido Nervoso/lesões , Tecido Nervoso/patologia , Receptor 2 Toll-Like/metabolismo
12.
Mol Brain ; 13(1): 119, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873320

RESUMO

Cav3.2 T-type calcium channels are important mediators of nociceptive signaling, but their roles in the transmission of itch remains poorly understood. Here we report a key involvement of these channels as key modulators of itch/pruritus-related behavior. We compared scratching behavior responses between wild type and Cav3.2 null mice in models of histamine- or chloroquine-induced itch. We also evaluated the effect of the T-type calcium channel blocker DX332 in male and female wild-type mice injected with either histamine or chloroquine. Cav3.2 null mice exhibited decreased scratching responses during both histamine- and chloroquine-induced acute itch. DX332 co-injected with the pruritogens inhibited scratching responses of male and female mice treated with either histamine or chloroquine. Altogether, our data provide strong evidence that Cav3.2 T-type channels exert an important role in modulating histamine-dependent and -independent itch transmission in the primary sensory afferent pathway, and highlight these channels as potential pharmacological targets to treat pruritus.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Prurido/metabolismo , Doença Aguda , Animais , Comportamento Animal , Canais de Cálcio Tipo T/deficiência , Cloroquina , Feminino , Histamina , Masculino , Camundongos Endogâmicos C57BL
13.
Mol Brain ; 12(1): 114, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31878979

RESUMO

Anxiety related disorders commonly occur in association with major depressive disorder (MDD) in individuals suffering from peripheral inflammation, with a higher prevalence among IBS patients. We have previously shown that the bioflavonoid luteolin has pronounced analgesic and antidepressant-like effects in mice with dextran sodium sulfate (DSS)-induced colitis. Here, we further evaluate the biological effect of luteolin as a possible anxiolytic agent in DSS treated mice. Anxiolytic action was evaluated using the open field test (OF), the novelty suppressed feeding test (NSFT) and the elevated plus maze test (EPM). Luteolin increased the number of crossings in the center of the OF apparatus, reduced the latency to interact with the food pellet in the NSFT, and increased the time spent in the open arms in the EPM. These results suggest luteolin as a possible natural anxiolytic molecule without sedative effects, thus reinforcing its therapeutic potential for the comorbidities involving peripheral inflammation, pain, mood and anxiety-related disorders.


Assuntos
Ansiolíticos/uso terapêutico , Colite/tratamento farmacológico , Luteolina/uso terapêutico , Doença Aguda , Animais , Sulfato de Dextrana , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos
14.
Mol Brain ; 12(1): 105, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801602

RESUMO

Peripheral nerve injury can lead to remodeling of brain circuits, and this can cause chronification of pain. We have recently reported that male mice subjected to spared injury of the sciatic nerve undergo changes in the function of the medial prefrontal cortex (mPFC) that culminate in reduced output of layer 5 pyramidal cells. More recently, we have shown that this is mediated by alterations in synaptic inputs from the basolateral amygdala (BLA) into GABAergic interneurons in the mPFC. Optogenetic inhibition of these inputs reversed mechanical allodynia and thermal hyperalgesia in male mice. It is known that the processing of pain signals can exhibit marked sex differences. We therefore tested whether the dysregulation of BLA to mPFC signaling is equally altered in female mice. Injection of AAV-Arch3.0 constructs into the BLA followed by implantation of a fiberoptic cannula into the mPFC in sham and SNI operated female mice was carried out, and pain behavioral responses were measured in response to yellow light mediated activation of this inhibitory opsin. Our data reveal that Arch3.0 activation leads to a marked increase in paw withdrawal thresholds and latencies in response to mechanical and thermal stimuli, respectively. However, we did not observe nerve injury-induced changes in mPFC layer 5 pyramidal cell output in female mice. Hence, the observed light-induced analgesic effects may be due to compensation for dysregulated neuronal circuits downstream of the mPFC.


Assuntos
Analgésicos/metabolismo , Complexo Nuclear Basolateral da Amígdala/patologia , Tecido Nervoso/lesões , Optogenética , Córtex Pré-Frontal/patologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Tecido Nervoso/patologia , Neuralgia/patologia , Células Piramidais/patologia
15.
Nat Neurosci ; 22(10): 1659-1668, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501573

RESUMO

Neuropathic pain can be a debilitating condition with both sensory and affective components, the underlying brain circuitry of which remains poorly understood. In the present study, a basolateral amygdala (BLA)-prefrontal cortex (PFC)-periaqueductal gray (PAG)-spinal cord pathway was identified that is critical for the development of mechanical and thermal hypersensitivity after peripheral nerve injury. It was shown that nerve injury strengthens synaptic input from the BLA onto inhibitory interneurons located in the prelimbic medial PFC, by virtue of reduced endocannabinoid modulation. These augmented synaptic connections mediate a feedforward inhibition of projections from the PFC to the ventrolateral PAG region and its downstream targets. Optogenetic approaches combined with in vivo pharmacology reveal that these BLA-PFC-PAG connections alter pain behaviors by reducing descending noradrenergic and serotoninergic modulation of spinal pain signals. Thus, a long-range brain circuit was identified that is crucial for pain processing and that can potentially be exploited toward targeting neuropathic pain.


Assuntos
Vias Neurais/patologia , Neuralgia/patologia , Neurônios/patologia , Tonsila do Cerebelo/patologia , Animais , Comportamento Animal , Temperatura Alta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Neuralgia/psicologia , Optogenética , Substância Cinzenta Periaquedutal/patologia , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/psicologia , Estimulação Física , Córtex Pré-Frontal/patologia , Medula Espinal/patologia , Sinapses/patologia
16.
iScience ; 16: 12-21, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31146128

RESUMO

Many patients with visceral inflammation develop pain and psychiatric comorbidities such as major depressive disorder, worsening the quality of life and increasing the risk of suicide. Here we show that neuroimmune activation in mice with dextran sodium sulfate-induced colitis is accompanied by the development of pain and depressive behaviors. Importantly, treatment with the flavonoid luteolin prevented both neuroimmune responses and behavioral abnormalities, suggesting a new potential therapeutic approach for patients with inflammatory bowel diseases.

17.
Mol Brain ; 11(1): 60, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340616

RESUMO

Cav3.2 T-type calcium channels are important for the signaling of nociceptive information in the primary afferent pain pathway. During neuropathy and peripheral inflammation, Cav3.2 channels are upregulated due to an increased association with the deubiquitinase USP5. Disrupting these interactions in male mice by the use of cell permeant peptides reverses mechanical and thermal hypersensitivity. Here we explore the effects of interfering with USP5 binding to the channel in female mice with synchronized estrous cycle. We show that intrathecal delivery of a cell-penetrating TAT peptide corresponding to the UBPc domain of USP5 fully reverses mechanical hypersensitivity in mice intraplantarly injected with Complete Freund's Adjuvant. Hence, the USP5 mediated dysregulation of Cav3.2 channel activity does not exhibit sex differences, and potential therapeutics targeting this interaction should be effective in both male and female subjects.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Hiperalgesia/metabolismo , Inflamação/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Dor Crônica/metabolismo , Dor Crônica/patologia , Feminino , Hiperalgesia/patologia , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo
18.
Cell Rep ; 22(8): 1956-1964, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466724

RESUMO

Cavα2δ subunits contribute to the cell-surface expression of Cav2 calcium channels. Upregulation of Cavα2δ-1 in dorsal root ganglion neurons occurs after nerve injury and results in an increased synaptic abundance of Cav2.2 channels in the spinal dorsal horn, thus enhancing the transmission of pain signals. Here, we report that large conductance calcium-activated potassium (BK) channels interact with the Cavα2δ subunit. Coexpression of BK channels with the Cav2 calcium channels reduces their cell-surface expression and whole-cell current density by competing the Cavα2δ subunit away from the Cav2 complex. Biochemical analysis reveals that the extracellular N terminus region of the BK channel is the key molecular determinant of this effect. Intrathecally delivered virus constructs encoding a membrane-anchored BK channel N terminus peptide produces long-lasting analgesia in mouse models of inflammatory and neuropathic pain. Collectively, our data reveal an endogenous ligand of the Cavα2δ subunit with analgesic properties.


Assuntos
Canais de Cálcio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Neuralgia/metabolismo , Neuralgia/patologia , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Analgesia , Animais , Membrana Celular/metabolismo , Inflamação/patologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Masculino , Camundongos Endogâmicos C57BL , Subunidades Proteicas/química
19.
Mol Pain ; 13: 1744806917724698, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28741432

RESUMO

Abstract: We recently reported that nerve injury or peripheral inflammation triggers an upregulation of the deubiquitinase, USP5 in mouse dorsal root ganglion and spinal dorsal horn. This leads to dysregulated ubiquitination of Cav3.2 T-type calcium channels, thus increasing Cav3.2 channel plasma membrane expression and nociceptive signaling in the primary afferent pain pathway. This phenomenon could be recapitulated by noninvasive, optogenetic activation of transient receptor potential vanilloid-1­expressing nociceptors, indicating that neuronal activity is a key player in this process. Given the relevance of the pro-inflammatory cytokine interleukin-1 beta in many forms of pathological pain, we hypothesized that interleukin-1 beta may be a critical cofactor required to drive upregulation of interactions between USP5 and Cav3.2 channels. Here, we report that gene expression, as well as protein levels for interleukin-1 beta and the endogenous interleukin-1 receptor-I antagonist, IL-1Ra are unaltered following conditioning stimulation of optogenetically targeted cutaneous nociceptors, indicating that neuronal activity is not a driver of interleukin-1 beta signaling. In contrast, co-immunoprecipitation experiments revealed that intrathecal administration of interleukin-1 beta in wild-type mice led to an increase in the interaction between USP5 and Cav3.2 in the spinal dorsal horn. Moreover, disruption of the interaction between USP5 and Cav3.2 with TAT peptides suppressed acute nocifensive responses produced by interleukin-1 beta, which was similar to that achieved by elimination of T-type channel activity with the channel blockers, mibefradil, or TTA-A2. Finally, this upregulation could be maintained in dorsal root ganglion neuron cultures exposed overnight to interleukin-1 beta, while the copresence of interleukin-1 receptor antagonist or the dampening of neuronal cell activity with tetrodotoxin attenuated this response. Altogether, our findings identify interleukin-1 beta as an upstream trigger for the upregulation of interactions between USP5 and Cav3.2 channels in the pain pathway, presumably by triggering increased firing activity in afferent fibers.


Assuntos
Canais de Cálcio Tipo T/genética , Interleucina-1beta/metabolismo , Dor/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Canais de Cálcio Tipo T/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuralgia/metabolismo , Neurônios/metabolismo , Nociceptores/metabolismo , Regulação para Cima
20.
Bioorg Med Chem ; 25(17): 4656-4664, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28720332

RESUMO

As a bioisosteric strategy to overcome the poor metabolic stability of lead compound KYS05090S, a series of new fluoro-substituted 3,4-dihydroquinazoline derivatives was prepared and evaluated for T-type calcium channel (Cav3.2) block, cytotoxic effects and liver microsomal stability. Among them, compound 8h (KCP10068F) containing 4-fluorobenzyl amide and 4-cyclohexylphenyl ring potently blocked Cav3.2 currents (>90% inhibition) at 10µM concentration and exhibited cytotoxic effect (IC50=5.9µM) in A549 non-small cell lung cancer cells that was comparable to KYS05090S. Furthermore, 8h showed approximately a 2-fold increase in liver metabolic stability in rat and human species compared to KYS05090S. Based on these overall results, 8h (KCP10068F) may therefore represent a good backup compound for KYS05090S for further biological investigations as novel cytotoxic agent. In addition, compound 8g (KCP10067F) was found to partially protect from inflammatory pain via a blockade of Cav3.2 channels.


Assuntos
Analgésicos/síntese química , Bloqueadores dos Canais de Cálcio/síntese química , Quinazolinas/química , Quinidina/análogos & derivados , Células A549 , Analgésicos/química , Analgésicos/toxicidade , Animais , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/toxicidade , Canais de Cálcio Tipo T/química , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Flúor/química , Células HEK293 , Humanos , Concentração Inibidora 50 , Microssomos Hepáticos/metabolismo , Técnicas de Patch-Clamp , Quinazolinas/síntese química , Quinazolinas/toxicidade , Quinidina/síntese química , Quinidina/química , Quinidina/toxicidade , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA