Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842455

RESUMO

Apolipoprotein A-I (apoA-I) is the major protein component of high-density lipoproteins (HDL), mediating many of its atheroprotective properties. Increasing data reveal the pro-atherogenic effects of bisphenol A (BPA), one of the most prevalent environmental chemicals. In this study, we investigated the mechanisms by which BPA exerts pro-atherogenic effects. For this, LDLR-/- mice were fed with a high-fat diet and treated with 50 µg BPA/kg body weight by gavage. After two months of treatment, the area of atherosclerotic lesions in the aorta, triglycerides and total cholesterol levels were significantly increased, while HDL-cholesterol was decreased in BPA-treated LDLR-/- mice as compared to control mice. Real-Time PCR data showed that BPA treatment decreased hepatic apoA-I expression. BPA downregulated the activity of the apoA-I promoter in a dose-dependent manner. This inhibitory effect was mediated by MEKK1/NF-κB signaling pathways. Transfection experiments using apoA-I promoter deletion mutants, chromatin immunoprecipitation, and protein-DNA interaction assays demonstrated that treatment of hepatocytes with BPA induced NF-κB signaling and thus the recruitment of p65/50 proteins to the multiple NF-κB binding sites located in the apoA-I promoter. In conclusion, BPA exerts pro-atherogenic effects downregulating apoA-I by MEKK1 signaling and NF-κB activation in hepatocytes.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Apolipoproteína A-I/genética , Aterosclerose/etiologia , Aterosclerose/metabolismo , Compostos Benzidrílicos/efeitos adversos , Regulação da Expressão Gênica , NF-kappa B/metabolismo , Fenóis/efeitos adversos , Animais , Apolipoproteína A-I/metabolismo , Aterosclerose/sangue , Aterosclerose/patologia , Biomarcadores , Modelos Animais de Doenças , Feminino , Hepatócitos/metabolismo , Lipídeos/sangue , Masculino , Camundongos , Camundongos Knockout , Receptores de LDL/deficiência
2.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779116

RESUMO

Apolipoprotein C1 (apoC1), the smallest of all apolipoproteins, participates in lipid transport and metabolism. In humans, APOC1 gene is in linkage disequilibrium with APOE gene on chromosome 19, a proximity that spurred its investigation. Apolipoprotein C1 associates with triglyceride-rich lipoproteins and HDL and exchanges between lipoprotein classes. These interactions occur via amphipathic helix motifs, as demonstrated by biophysical studies on the wild-type polypeptide and representative mutants. Apolipoprotein C1 acts on lipoprotein receptors by inhibiting binding mediated by apolipoprotein E, and modulating the activities of several enzymes. Thus, apoC1 downregulates lipoprotein lipase, hepatic lipase, phospholipase A2, cholesterylester transfer protein, and activates lecithin-cholesterol acyl transferase. By controlling the plasma levels of lipids, apoC1 relates directly to cardiovascular physiology, but its activity extends beyond, to inflammation and immunity, sepsis, diabetes, cancer, viral infectivity, and-not last-to cognition. Such correlations were established based on studies using transgenic mice, associated in the recent years with GWAS, transcriptomic and proteomic analyses. The presence of a duplicate gene, pseudogene APOC1P, stimulated evolutionary studies and more recently, the regulatory properties of the corresponding non-coding RNA are steadily emerging. Nonetheless, this prototypical apolipoprotein is still underexplored and deserves further research for understanding its physiology and exploiting its therapeutic potential.


Assuntos
Apolipoproteína C-I/química , Apolipoproteína C-I/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas VLDL/metabolismo , Motivos de Aminoácidos , Apolipoproteína C-I/genética , Apolipoproteínas E/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Ligação Proteica , Pseudogenes , Receptores de Lipoproteínas/metabolismo
3.
Int J Mol Sci ; 20(6)2019 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-30909560

RESUMO

Apolipoprotein E (apoE) is mainly secreted by hepatocytes and incorporated into most plasma lipoproteins. Macrophages, which accumulate cholesterol and are critical for the development of the atherosclerotic plaque, are also an important, albeit smaller, apoE source. Distal regulatory elements control cell-specific activity of the apoE promoter: multienhancers (ME.1/2) in macrophages and hepatic control regions (HCR-1/2) in hepatocytes. A member of AP-1 cell growth regulator, c-Jun regulates the transcription of various apolipoproteins and proinflammatory molecules implicated in atherosclerosis. We aimed to investigate the effect of c-Jun on apoE expression in macrophages versus hepatocytes and to reveal the underlying molecular mechanisms. Herein we show that c-Jun had an opposite, cell-specific effect on apoE expression: downregulation in macrophages but upregulation in hepatocytes. Transient transfections using ME.2 deletion mutants and DNA pull-down (DNAP) assays showed that the inhibitory effect of c-Jun on the apoE promoter in macrophages was mediated by a functional c-Jun binding site located at 301/311 on ME.2. In hepatocytes, c-Jun overexpression strongly increased apoE expression, and this effect was due to c-Jun binding at the canonical site located at -94/-84 on the apoE proximal promoter, identified by transient transfections using apoE deletion mutants, DNAP, and chromatin immunoprecipitation assays. Overall, the dual effect of c-Jun on apoE gene expression led to decreased cholesterol efflux in macrophages resident in the atherosclerotic plaque synergized with an increased level of systemic apoE secreted by the liver to exacerbate atherogenesis.


Assuntos
Apolipoproteínas E/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Elementos Facilitadores Genéticos , Hepatócitos/imunologia , Macrófagos/imunologia , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas , Células RAW 264.7 , Fator de Transcrição AP-1/metabolismo
4.
World J Biol Chem ; 7(1): 178-87, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26981206

RESUMO

AIM: To investigate the effect of high homocysteine (Hcy) levels on apolipoprotein E (apoE) expression and the signaling pathways involved in this gene regulation. METHODS: Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot were used to assess apoE expression in cells treated with various concentrations (50-500 µmol/L) of Hcy. Calcium phosphate-transient transfections were performed in HEK-293 and RAW 264.7 cells to evaluate the effect of Hcy on apoE regulatory elements [promoter and distal multienhancer 2 (ME2)]. To this aim, plasmids containing the proximal apoE promoter [(-500/+73)apoE construct] alone or in the presence of ME2 [ME2/(-500/+73)apoE construct] to drive the expression of the reporter luciferase gene were used. Co-transfection experiments were carried out to investigate the downstream effectors of Hcy-mediated regulation of apoE promoter by using specific inhibitors or a dominant negative form of IKß. In other co-transfections, the luciferase reporter was under the control of synthetic promoters containing multiple specific binding sites for nuclear factor kappa B (NF-κB), activator protein-1 (AP-1) or nuclear factor of activated T cells (NFAT). Chromatin immunoprecipitation (ChIP) assay was accomplished to detect the binding of NF-κB p65 subunit to the apoE promoter in HEK-293 treated with 500 µmol/L Hcy. As control, cells were incubated with similar concentration of cysteine. NF-κB p65 proteins bound to DNA were immunoprecipitated with anti-p65 antibodies and DNA was identified by PCR using primers amplifying the region -100/+4 of the apoE gene. RESULTS: RT-PCR revealed that high levels of Hcy (250-750 µmol/L) induced a 2-3 fold decrease in apoE mRNA levels in HEK-293 cells, while apoE gene expression was not significantly affected by treatment with lower concentrations of Hcy (100 µmol/L). Immunoblotting data provided additional evidence for the negative role of Hcy in apoE expression. Hcy decreased apoE promoter activity, in the presence or absence of ME2, in a dose dependent manner, in both RAW 264.7 and HEK-293 cells, as revealed by transient transfection experiments. The downstream effectors of the signaling pathways of Hcy were also investigated. The inhibitory effect of Hcy on the apoE promoter activity was counteracted by MAPK/ERK kinase 1/2 (MEK1/2) inhibitor U0126, suggesting that MEK1/2 is involved in the downregulation of apoE promoter activity by Hcy. Our data demonstrated that Hcy-induced inhibition of apoE took place through activation of NF-κB. Moreover, we demonstrated that Hcy activated a synthetic promoter containing three NF-κB binding sites, but did not affect promoters containing AP-1 or NFAT binding sites. ChIP experiments revealed that NF-κB p65 subunit is recruited to the apoE promoter following Hcy treatment of cells. CONCLUSION: Hcy-induced stress negatively modulates apoE expression via MEK1/2 and NF-κB activation. The decreased apoE expression in peripheral tissues may aggravate atherosclerosis, neurodegenerative diseases and renal dysfunctions.

5.
Biochem Biophys Res Commun ; 468(1-2): 190-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26519880

RESUMO

Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor ß (TRß) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRß and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRß/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRß/RXRα complex bound to the region 341-488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5'- and 3'-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRß binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRß/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain.


Assuntos
Apolipoproteínas E/genética , Astrócitos/metabolismo , Hormônios Tireóideos/metabolismo , Regulação para Cima , Alitretinoína , Sítios de Ligação , Linhagem Celular , Humanos , Regiões Promotoras Genéticas , Receptores dos Hormônios Tireóideos/metabolismo , Receptor X Retinoide alfa/metabolismo , Receptores X de Retinoides/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Tretinoína/metabolismo , Tri-Iodotironina/metabolismo
6.
Biochem Biophys Res Commun ; 468(1-2): 66-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26546821

RESUMO

Krüppel-like factor 4 (KLF4) is a critical regulator of monocyte differentiation and macrophage polarization, and it also plays an important role in several vascular diseases, including atherosclerosis. Apolipoprotein E (apoE) is an essential anti-atherosclerotic glycoprotein involved in lipid metabolism, expressed by the liver, macrophages and other cell types. We hypothesized that KLF4 is involved in apoE gene regulation in macrophages. Our experiments showed that differentiation of THP-1 monocytes to macrophages using PMA was associated with a robust induction of both KLF4 and apoE genes. KLF4 bound to the apoE promoter, as revealed by chromatin immunoprecipitation and DNA pull-down (DNAP) assays, and transactivated the apoE promoter in a dose-dependent manner. Using a series of apoE promoter deletion mutants we revealed the biological activity of multiple KLF4 binding sites located in the [-500/-100] region of apoE promoter. Moreover, overexpression of cAMP-response-element-binding protein (CREB) further increased KLF4 up-regulatory effect on apoE promoter. Despite the fact that no putative CREB binding sites were predicted in silico, we found that in macrophages CREB bound to apoE proximal promoter in the region -200/+4 and even more strongly on -350/-274 region. In similar DNAP experiments using cell extracts obtained from monocytes (lacking KLF4), a very weak binding of CREB was detected, indicating that interaction of CREB with apoE promoter takes place indirectly. In conclusion our results show: (i) a robust synchronized induction of KLF4 and apoE expression during differentiation of monocytes to macrophages; (ii) KLF4 up-regulates apoE gene in a dose-dependent manner; (iii) biologically active KLF4 binding sites are present on apoE promoter and (iv) the interaction of KLF4 with CREB results in an enhanced up-regulatory effect of KLF4 on apoE promoter. Taken together these data provide novel knowledge on apoE gene regulation mechanism in macrophages, and offer insight into the therapeutic potential of KLF4 in atherosclerosis.


Assuntos
Apolipoproteínas E/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Macrófagos/citologia , Monócitos/citologia , Regiões Promotoras Genéticas , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Humanos , Fator 4 Semelhante a Kruppel , Macrófagos/metabolismo , Dados de Sequência Molecular , Monócitos/metabolismo , Regulação para Cima
7.
Biochem Biophys Res Commun ; 461(2): 435-40, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25899745

RESUMO

The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5-10 mM). Low doses of metformin (1-3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5'-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis.


Assuntos
Anti-Inflamatórios/farmacologia , Apolipoproteínas E/genética , Regulação para Baixo/efeitos dos fármacos , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Metformina/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Humanos , Hipoglicemiantes/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Regulação para Cima/efeitos dos fármacos
8.
PLoS One ; 7(7): e40463, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808166

RESUMO

Apolipoprotein CII (apoCII) is a specific activator of lipoprotein lipase and plays an important role in triglyceride metabolism. The aim of our work was to elucidate the regulatory mechanisms involved in apoCII gene modulation in macrophages. Using Chromosome Conformation Capture we demonstrated that multienhancer 2 (ME.2) physically interacts with the apoCII promoter and this interaction facilitates the transcriptional enhancement of the apoCII promoter by the transcription factors bound on ME.2. We revealed that the transcription factor STAT1, previously shown to bind to its specific site on ME.2, is functional for apoCII gene upregulation. We found that siRNA-mediated inhibition of STAT1 gene expression significantly decreased the apoCII levels, while STAT1 overexpression in RAW 264.7 macrophages increased apoCII gene expression. Using transient transfections, DNA pull down and chromatin immunoprecipitation assays, we revealed a novel STAT1 binding site in the -500/-493 region of the apoCII promoter, which mediates apoCII promoter upregulation by STAT1. Interestingly, STAT1 could not exert its upregulatory effect when the RXRα/T3Rß binding site located on the apoCII promoter was mutated, suggesting physical and functional interactions between these factors. Using GST pull-down and co-immunoprecipitation assays, we demonstrated that STAT1 physically interacts with RXRα. Taken together, these data revealed that STAT1 bound on ME.2 cooperates with RXRα located on apoCII promoter and upregulates apoCII expression only in macrophages, due to the specificity of the long-range interactions between the proximal and distal regulatory elements. Moreover, we showed for the first time that STAT1 and RXRα physically interact to exert their regulatory function.


Assuntos
Apolipoproteína C-II/genética , Macrófagos/metabolismo , Receptor X Retinoide alfa/metabolismo , Fator de Transcrição STAT1/metabolismo , Regulação para Cima/genética , Animais , Apolipoproteína C-II/metabolismo , Linhagem Celular , Cromossomos Humanos/metabolismo , Elementos Facilitadores Genéticos/genética , Hepatócitos/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica/genética , Ativação Transcricional/genética
9.
Arterioscler Thromb Vasc Biol ; 28(5): 878-85, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18309110

RESUMO

OBJECTIVE: NADPH oxidase (NADPHox) is the major source of reactive oxygen species in vascular diseases; the mechanisms of enzyme activation are not completely elucidated. AP-1 controls the expression of many genes linked to vascular smooth muscle cells (SMCs) dysfunction. In this study we searched for the role of AP-1 in the regulation of NADPHox expression and function in human aortic SMCs exposed to proinflammatory conditions. METHODS AND RESULTS: Cultured SMCs were exposed to either angiotensin II (Ang II) or tumor necrosis factor (TNF)-alpha. The lucigenin-enhanced chemiluminescence assay and real-time polymerase chain reaction analysis revealed that AP-1 and mitogen-activated protein kinase inhibitors reduced both Ang II or TNF-alpha-dependent upregulation of NADPHox activity and mRNA expression (NOX1, NOX4, p67(phox), p47(phox), p22(phox)). Inhibitors of AP-1 significantly diminished the Ang II or TNF-alpha-stimulated p22(phox) promoter activity and protein level. Transient overexpression of c-Jun/c-Fos upregulated p22(phox) promoter activity. Transcription factor pull-down assay and chromatin immunoprecipitation demonstrated the physical interaction of c-Jun protein with predicted AP-1-binding sites in the p22(phox) gene promoter. CONCLUSIONS: In SMCs exposed to Ang II or TNF-alpha, inhibition of AP-1-related pathways reduces NADPHox expression and the O(2)(-) production. The physical interaction of AP-1 with p22(phox) gene promoter facilitates NADPHox regulation.


Assuntos
Aorta Torácica/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Músculo Liso Vascular/metabolismo , NADPH Oxidases/metabolismo , Fator de Transcrição AP-1/metabolismo , Angiotensina II/farmacologia , Aorta Torácica/patologia , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Músculo Liso Vascular/patologia , NADPH Oxidase 1 , NADPH Oxidase 4 , NADPH Oxidases/genética , Oxigênio/metabolismo , Fosfoproteínas/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
10.
J Biol Chem ; 282(30): 21776-85, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17553793

RESUMO

The atheroprotective role of apolipoprotein E (apoE) is well established. During inflammation, expression of apoE in macrophages is reduced leading to enhanced atheromatous plaque development. In the present study, we investigated the signaling pathways involved in the repression of apoE gene expression in response to lipopolysaccharide (LPS) treatment, a condition that mimics the inflammatory stress, in mouse macrophages RAW 264.7. We identified Tpl-2 and MEKK1 as the kinases that are primarily responsible for the down-regulation of apoE promoter activity by LPS. Using a dominant negative form of IkappaB, we established that Tpl-2 and MEKK1 signaling pathways converge to NF-kappaB acting on the apoE core promoter -55/+73. In addition to NF-kappaB activation, LPS also activated c-Jun via its phosphorylation by JNK. The activity of the apoE promoter was repressed by c-Jun, whereas small interference RNA-mediated inhibition of endogenous c-Jun expression reversed the inhibitory effect of Tpl-2 on the apoE promoter. Transfection experiments and DNA binding assays showed that the binding site for c-Jun is in the -55/+73 region of the apoE promoter. Finally, we showed that LPS inhibited apoE gene expression via activation of the Tpl-2/MEK/ERK pathway acting on a different apoE promoter region. In summary, LPS represses apoE gene expression in macrophages via signaling pathways that involve the upstream kinases Tpl-2 and MEKK1, the intermediate mitogen-activated protein kinases ERK and JNK, and the downstream transcription factors AP-1 and NF-kappaB that inhibit the apoE promoter activity via distinct regions.


Assuntos
Apolipoproteínas E/genética , Regulação da Expressão Gênica , Inflamação/fisiopatologia , Macrófagos/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Núcleo Celular/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA