Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172969

RESUMO

BACKGROUND: In colorectal cancer, the effects of immune checkpoint inhibitors are mostly limited to patients with deficient mismatch repair tumors, characterized by a high grade infiltration of CD8+T cells. Interventions aimed at increasing intratumoral CD8+T-cell infiltration in proficient mismatch repair tumors are lacking. METHODS: We conducted a proof of concept phase 1/2 clinical trial, where patients with non-metastasizing sigmoid or rectal cancer, scheduled for curative intended surgery, were treated with an endoscopic intratumorally administered neoadjuvant influenza vaccine. Blood and tumor samples were collected before the injection and at the time of surgery. The primary outcome was safety of the intervention. Evaluation of pathological tumor regression grade, immunohistochemistry, flow cytometry of blood, tissue bulk transcriptional analyses, and spatial protein profiling of tumor regions were all secondary outcomes. RESULTS: A total of 10 patients were included in the trial. Median patient age was 70 years (range 54-78), with 30% women. All patients had proficient mismatch repair Union of International Cancer Control stage I-III tumors. No endoscopic safety events occurred, with all patients undergoing curative surgery as scheduled (median 9 days after intervention). Increased CD8+T-cell tumor infiltration was evident after vaccination (median 73 vs 315 cells/mm2, p<0.05), along with significant downregulation of messenger RNA gene expression related to neutrophils and upregulation of transcripts encoding cytotoxic functions. Spatial protein analysis showed significant local upregulation of programmed death-ligand 1 (PD-L1) (adjusted p value<0.05) and downregulation of FOXP3 (adjusted p value<0.05). CONCLUSIONS: Neoadjuvant intratumoral influenza vaccine treatment in this cohort was demonstrated to be safe and feasible, and to induce CD8+T-cell infiltration and upregulation of PD-L1 proficient mismatch repair sigmoid and rectal tumors. Definitive conclusions regarding safety and efficacy can only be made in larger cohorts. TRIAL REGISTRATION NUMBER: NCT04591379.


Assuntos
Neoplasias Colorretais , Vacinas contra Influenza , Neoplasias Retais , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Antígeno B7-H1/metabolismo , Neoplasias Colorretais/patologia , Regulação para Cima , Reparo de Erro de Pareamento de DNA , Terapia Neoadjuvante , Linfócitos T CD8-Positivos
2.
Cancers (Basel) ; 15(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37046716

RESUMO

As the core component of all organs, the extracellular matrix (ECM) is an interlocking macromolecular meshwork of proteins, glycoproteins, and proteoglycans that provides mechanical support to cells and tissues. In cancer, the ECM can be remodelled in response to environmental cues, and it controls a plethora of cellular functions, including metabolism, cell polarity, migration, and proliferation, to sustain and support oncogenesis. The biophysical and biochemical properties of the ECM, such as its structural arrangement and being a reservoir for bioactive molecules, control several intra- and intercellular signalling pathways and induce cytoskeletal changes that alter cell shapes, behaviour, and viability. Desmoplasia is a major component of solid tumours. The abnormal deposition and composition of the tumour matrix lead to biochemical and biomechanical alterations that determine disease development and resistance to treatment. This review summarises the complex roles of ECM in cancer and highlights the possible therapeutic targets and how to potentially remodel the dysregulated ECM in the future. Furthering our understanding of the ECM in cancer is important as the modification of the ECM will probably become an important tool in the characterisation of individual tumours and personalised treatment options.

3.
Eur J Cancer ; 180: 30-51, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36527974

RESUMO

Cell metabolism is characterised by the highly coordinated conversion of nutrients into energy and biomass. In solid cancers, hypoxia, nutrient deficiencies, and tumour vasculature are incompatible with accelerated anabolic growth and require a rewiring of cancer cell metabolism. Driver gene mutations direct malignant cells away from oxidation to maximise energy production and biosynthesis while tumour-secreted factors degrade peripheral tissues to fuel disease progression and initiate metastasis. As it is vital to understand cancer cell metabolism and survival mechanisms, this review discusses the metabolic switch and current drug targets and clinical trials. In the future, metabolic markers may be included when phenotyping individual tumours to improve the therapeutic opportunities for personalised therapy.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Metabolismo Energético , Glicólise , Mutação
4.
Oncogenesis ; 11(1): 22, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504900

RESUMO

Neutrophils are central mediators of innate and adaptive immunity and first responders to tissue damage. Although vital to our health, their activation, function, and resolution are critical to preventing chronic inflammation that may contribute to carcinogenesis. Cancers are associated with the expansion of the neutrophil compartment with an escalation in the number of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in the peripheral circulation and tumor microenvironment. Although phenotypically similar to classically activated neutrophils, PMN-MDSC is pathologically activated and immunosuppressive in nature. They dynamically interact with other cell populations and tissue components and convey resistance to anticancer therapies while accelerating disease progression and metastatic spread. Cancer-associated neutrophilia and tumor infiltration of neutrophils are significant markers of poor outcomes in many cancers. Recently, there has been significant progress in the identification of molecular markers of PMN-MDSC providing insights into the central role of PMN-MDSC in the local tumor microenvironment as well as the systemic immune response in cancer. Further advances in sequencing and proteomics techniques will improve our understanding of their diverse functionalities and the complex molecular mechanisms at play. Targeting PMN-MDSC is currently one of the major focus areas in cancer research and several signaling pathways representing possible treatment targets have been identified. Positive results from preclinical studies clearly justify the current investigation in drug development and thus novel therapeutic strategies are being evaluated in clinical trials. In this review, we discuss the involvement of PMN-MDSC in cancer initiation and progression and their potential as therapeutic targets and clinical biomarkers in different cancers.

5.
Cancer Lett ; 520: 233-242, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34302920

RESUMO

The detection and killing of neoplastic cells require coordination of a variety of antitumor effector cells. Natural killer (NK) cells of the innate immune system are at the forefront of the body's defense systems and evidence suggests that the infiltration and cytotoxicity of NK cells in the cancer tissue influence treatment efficacy and survival. As powerful effectors in the anticancer immune response, NK cells rapidly recognize and kill transformed cells with little reactivity against healthy self-tissues, which highlights their potential role in cancer immunotherapy. Modern immunotherapeutic approaches include immune checkpoint inhibitors to revitalize dysfunctional T cells and adoptive cell transfer using CD8+ T cells with chimeric antigen receptors to enhance their functionality. However, treatment responses may be short-lived and risk of discontinuation due to adverse effects necessitates the development of safer immuno-oncologic therapies with improved outcomes. To this end, novel combinatorial interventions using T cells and NK cells and strategies for overcoming associated challenges are currently being investigated. This review summarizes the advances in the research on NK cells in cancer and cancer immunotherapy and discusses the possible implications for future cancer treatment.


Assuntos
Imunoterapia , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Imunoterapia Adotiva/tendências , Neoplasias/genética , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico
6.
Front Oncol ; 11: 668731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094963

RESUMO

Our understanding of the tumor microenvironment (TME), including the interplay between tumor cells, stromal cells, immune cells, and extracellular matrix components, is mandatory for the innovation of new therapeutic approaches in cancer. The cell-cell communication within the TME plays a pivotal role in the evolution and progression of cancer. Cancer-associated fibroblasts (CAF) and tumor-associated macrophages (TAM) are major cell populations in the stroma of all solid tumors and often exert protumorigenic functions; however, the origin and precise functions of CAF and TAM are still incompletely understood. CAF and TAM hold significant potential as therapeutic targets to improve outcomes in oncology when combined with existing therapies. The regulation of CAF/TAM communication and/or their differentiation could be of high impact for improving the future targeted treatment strategies. Nevertheless, there is much scope for research and innovation in this field with regards to the development of novel drugs. In this review, we elaborate on the current knowledge on CAF and TAM in cancer and cancer immunotherapy. Additionally, by focusing on their heterogenous functions in different stages and types of cancer, we explore their role as potential therapeutic targets and highlight certain aspects of their functions that need further research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA