Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Evolution ; 76(6): 1124-1138, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35373337

RESUMO

Nested hierarchical structure is one of life's most familiar properties and a major component of biological diversity and complexity. However, there is little effort to teach the evolution of the hierarchy of life, as there is little effort to teach biological complexity per se. We propose a framework for teaching biological complexity based on research on evolutionary transitions in individuality (ETI theory). Translating ETI theory into the classroom allows students to see the connections between natural selection, social behavior in groups, and the major landmarks of biodiversity in the hierarchy of life. The translation of ETI theory into pedagogic content and practices involves (i) the new content that must be taught, (ii) the development of general teaching tools to teach this new content, and (iii) connecting the new content and teaching tools to the specific educational context including integrating with learning standards and benchmarks. We show how teaching ETIs aids in the teaching of science practices and in teaching the process of evolutionary change. Evolutionary transitions research provides a way to teach biological complexity that is familiar and engaging to students, leveraging their inherent understanding of social dynamics and group behavior.


Assuntos
Evolução Biológica , Seleção Genética , Humanos
2.
Cogn Res Princ Implic ; 5(1): 29, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32588283

RESUMO

BACKGROUND: Spatial thinking skills are strongly correlated with achievement in Science, Technology, Engineering, and Mathematics (STEM) fields and emerging research suggests that interventions aimed at building students' skills will likely yield measurable impacts on learning across K-12 settings. The importance of spatial thinking in science has received increased attention in academic discussions; however, the intentional practice of teaching spatial thinking skills is still largely absent from K-12 education. The translation of science into educational practice is challenging for a variety of reasons, including the difficulty "translating" research findings into practical applications and limited resources to support its development, implementation, and evaluation. Given these obstacles, one may ask "can spatial thinking be brought to the classroom?" In this paper, we argue that in order to effectively move research into the classroom, we must first systematically explore how spatial thinking can be translated into practice. APPROACH: We present a use-inspired, integrative framework that draws upon planned action and translation science theories, as well as research from cognitive, developmental, educational, and implementation sciences, to guide the infusion of spatial thinking into science curricula. In the Knowledge Translation Framework (KTF), translation is conceived as a multistage process, proceeding through seven stages: (1) the identification of relevant disciplinary and contextual knowledge, (2) the synthesis and translation of knowledge into guidelines to support the infusion of knowledge into the curriculum, (3) the development of tools to support curriculum development, implementation, and track the translation process, (4) the iterative development and refinement of the spatially-enhanced curriculum, (5) the creation of an analysis plan to evaluate the impact of the spatial enhancements and other contextual features on learning, (6) the development and implementation of an intervention plan, and (7) the evaluation of the intervention. CONCLUSION: The KTF is a use-inspired, integrative framework that unpacks the translation process and offers practical guidance on how a team may synthesize scientific and contextual knowledge, infuse it into a curriculum, and evaluate its impact in ways that will yield scientific understanding and practical knowledge. We also provide illustrative examples of how this approach was used to spatially enhance an elementary science curriculum.


Assuntos
Currículo , Visualização de Dados , Gestos , Guias como Assunto , Modelos Educacionais , Ciência/educação , Percepção Espacial , Pensamento , Humanos
3.
Top Cogn Sci ; 9(4): 883-901, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27886450

RESUMO

Science, technology, engineering, and mathematics (STEM) disciplines commonly illustrate 3D relationships in diagrams, yet these are often challenging for students. Failing to understand diagrams can hinder success in STEM because scientific practice requires understanding and creating diagrammatic representations. We explore a new approach to improving student understanding of diagrams that convey 3D relations that is based on students generating their own predictive diagrams. Participants' comprehension of 3D spatial diagrams was measured in a pre- and post-design where students selected the correct 2D slice through 3D geologic block diagrams. Generating sketches that predicated the internal structure of a model led to greater improvement in diagram understanding than visualizing the interior of the model without sketching, or sketching the model without attempting to predict unseen spatial relations. In addition, we found a positive correlation between sketched diagram accuracy and improvement on the diagram comprehension measure. Results suggest that generating a predictive diagram facilitates students' abilities to make inferences about spatial relationships in diagrams. Implications for use of sketching in supporting STEM learning are discussed.


Assuntos
Compreensão , Aprendizagem , Modelos Psicológicos , Resolução de Problemas , Percepção Espacial , Feminino , Humanos , Masculino , Matemática
4.
Cognition ; 138: 132-47, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25725370

RESUMO

Participants studied seven meaningful scene-regions bordered by removable boundaries (30s each). In Experiment 1 (N = 80) participants used visual or haptic exploration and then minutes later, reconstructed boundary position using the same or the alternate modality. Participants in all groups shifted boundary placement outward (boundary extension), but visual study yielded the greater error. Critically, this modality-specific difference in boundary extension transferred without cost in the cross-modal conditions, suggesting a functionally unitary scene representation. In Experiment 2 (N = 20), bimodal study led to boundary extension that did not differ from haptic exploration alone, suggesting that bimodal spatial memory was constrained by the more "conservative" haptic modality. In Experiment 3 (N = 20), as in picture studies, boundary memory was tested 30s after viewing each scene-region and as with pictures, boundary extension still occurred. Results suggest that scene representation is organized around an amodal spatial core that organizes bottom-up information from multiple modalities in combination with top-down expectations about the surrounding world.


Assuntos
Percepção Espacial , Percepção do Tato , Percepção Visual , Feminino , Humanos , Masculino , Memória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA