Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Discov Today ; 29(7): 104019, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729235

RESUMO

Inhalation drug delivery is superior for local lung disease therapy. However, there are several unique absorption barriers for inhaled drugs to overcome, including limited drug deposition at the target site, mucociliary clearance, pulmonary macrophage phagocytosis, and systemic exposure. Moreover, the respiratory disease state can affect or even destroy the physiology of the lung, thus influencing the in vivo fate of inhaled particles compared with that in healthy lungs. Nevertheless, limited information is available on this effect. Thus, in this review, we present pathological changes of the lung microenvironment under varied respiratory diseases and their influence on the in vivo fate of inhaled particles; such insights could provide a basis for rational inhalation particle design based on specific disease states.

2.
Int J Pharm ; 654: 123930, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38387820

RESUMO

Ginsenoside F1 (GF1) is a potential drug candidate for the treatment of Alzheimer's disease. Nevertheless, its low oral bioavailability and poor solubility limit clinical application. By utilizing either a direct or indirect approach, intranasal administration is a non-invasive drug delivery method that can deliver drugs to the brain rapidly. But large molecule drug delivered to the brain through intranasal administration may be insufficient to reach required concentration for therapeutic effect. In this study, using GF1 as a model drug, the feasibility of intranasal administration in combination with absorption enhancers to increase brain distribution of GF1 was explored. First of all, the appropriate absorption enhancers were screened by in situ nasal perfusion study. GF1-HP-ß-CD inclusion complex was prepared and characterized. Thereafter, in vivo absorption of GF1 after intranasal or intravenous administration of its inclusion complex with/without absorption enhancers was investigated, and safety of the formulations was evaluated. The results showed that 2% Solutol HS 15 was a superior absorption enhancer. HP-ß-CD inclusion complex improved GF1 solubility by 150 fold. Following intranasal delivery, the absolute bioavailability of inclusion complex was 46%, with drug brain targeting index (DTI) 247% and nose-to-brain direct transport percentage (DTP) 58%. Upon further addition of 2% Solutol HS 15, the absolute bioavailability was increased to 75%, with DTI 315% and DTP 66%. Both nasal cilia movement and biochemical substances (total protein and lactate dehydrogenase) leaching studies demonstrated 2% Solutol HS 15 was safe to the nasal mucosa. In conclusion, intranasal administration combining with safe absorption enhancers is an effective strategy to enhance drug distribution in the brain, showing promise for treating disorders related to the central nervous system.


Assuntos
Encéfalo , Ginsenosídeos , Mucosa Nasal , Polietilenoglicóis , Ácidos Esteáricos , Administração Intranasal , 2-Hidroxipropil-beta-Ciclodextrina , Encéfalo/metabolismo , Mucosa Nasal/metabolismo , Sistemas de Liberação de Medicamentos/métodos
3.
J Control Release ; 366: 746-760, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237688

RESUMO

Faced with the threat of lung cancer-related deaths worldwide, small interfering RNA (siRNA) can silence tumor related messenger RNA (mRNA) to tackle the issue of drug resistance with enhanced anti-tumor effects. However, how to increase lung tumor targeting and penetration with enhanced gene silencing are the issues to be addressed. Thus, the objective of this study is to explore the feasibility of designing non-viral siRNA vectors for enhanced lung tumor therapy via inhalation. Here, shell-core based polymer-lipid hybrid nanoparticles (HNPs) were prepared via microfluidics by coating PLGA on siRNA-loaded cationic liposomes (Lipoplexes). Transmission electron microscopy and energy dispersive spectroscopy study demonstrated that HNP consists of a PLGA shell and a lipid core. Atomic force microscopy study indicated that the rigidity of HNPs could be well tuned by changing thickness of the PLGA shell. The designed HNPs were muco-inert with increased stability in mucus and BALF, good safety, enhanced mucus penetration and cellular uptake. Crucially, HNP1 with the thinnest PLGA shell exhibited superior transfection efficiency (84.83%) in A549 cells, which was comparable to that of lipoplexes and Lipofectamine 2000, and its tumor permeability was 1.88 times that of lipoplexes in A549-3T3 tumor spheroids. After internalization of the HNPs, not only endosomal escape but also lysosomal exocytosis was observed. The transfection efficiency of HNP1 (39.33%) was 2.26 times that of lipoplexes in A549-3T3 tumor spheroids. Moreover, HNPs exhibited excellent stability during nebulization via soft mist inhaler. In conclusion, our study reveals the great potential of HNP1 in siRNA delivery for lung cancer therapy via inhalation.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , RNA Interferente Pequeno , Lipossomos , Transfecção , Células A549
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA