Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 88(3): 530-541, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37578872

RESUMO

With the serious deterioration of the water environment, accurate prediction of water quality changes has become a topic of increasing concern. To further improve the accuracy of water quality prediction and the stability and generalization ability of the model, we propose a new water quality spatiotemporal forecast model to predict future water quality. To capture the spatiotemporal characteristics of water quality pollution data, the three sites (station S1, station S2, station S4) with the highest temperature time series concentration correlation at the experimental sites were first extracted to predict the water temperature at station S1, and 17,380 records were collected at each monitoring station, and the spatiotemporal characteristics were extracted by BiGRU-SVR network model. This paper's prediction test is based on the actual water quality data of the Qinhuangdao sea area in Hebei province from 2 September to 26 September 2013 and compared with other baseline models. The experimental results show that the proposed model is better than other baseline models and effectively improves the accuracy of water quality prediction, and the mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) are 0.071, 0.076, and 0.957, respectively, which have good robustness.

2.
Front Plant Sci ; 14: 1099668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760628

RESUMO

Most of the water quality indicators that affect the results of river water quality assessment are gray and localized, thus the correlation between water quality indicators can be calculated using gray correlation analysis (GRA).However, GRA takes equal weighting for water quality indicators and does not take into account the weighting of the indicators. Therefore, this paper proposes a river water quality assessment method based on improved grey correlation analysis (ACGRA) andparticle swarm optimization multi-classification support vector machine (PSO-MSVM) for assessing river water environment quality. Firstly, the combination weights of water quality indicators were calculated using Analytic Hierarchy Process (AHP)AHP and Criteria Importance Though Intercrieria Correlation (CRITIC)CRITIC, and then the correlation between water quality indicators was calculated for feature selection. Secondly, the PSO-MSVM model was established using the water quality indicators obtained by ACGRA as input parameters for water environment quality assessment. The river water environment assessment methods of ACGRA and PSO-MSVM were applied to the evaluation of water environment quality in different watersheds in the country. Accuracy, precision, recall and root mean square errorRMSE were also introduced as model evaluation criteria. The results show that the river water environment assessment methods based on ACGRA and PSO-MSVM can evaluate the water environment quality more accurately.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA