Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786715

RESUMO

Green mold, caused by Penicillium digitatum, is the major cause of citrus postharvest decay. Currently, the application of sterol demethylation inhibitor (DMI) fungicide is one of the main control measures to prevent green mold. However, the fungicide-resistance problem in the pathogen P. digitatum is growing. The regulatory mechanism of DMI fungicide resistance in P. digitatum is poorly understood. Here, we first performed transcriptomic analysis of the P. digitatum strain Pdw03 treated with imazalil (IMZ) for 2 and 12 h. A total of 1338 genes were up-regulated and 1635 were down-regulated under IMZ treatment for 2 h compared to control while 1700 were up-regulated and 1661 down-regulated under IMZ treatment for 12 h. The expression of about half of the genes in the ergosterol biosynthesis pathway was affected during IMZ stress. Further analysis identified that 84 of 320 transcription factors (TFs) were differentially expressed at both conditions, making them potential regulators in DMI resistance. To confirm their roles, three differentially expressed TFs were selected to generate disruption mutants using the CRISPR/Cas9 technology. The results showed that two of them had no response to IMZ stress while ∆PdflbC was more sensitive compared with the wild type. However, disruption of PdflbC did not affect the ergosterol content. The defect in IMZ sensitivity of ∆PdflbC was restored by genetic complementation of the mutant with a functional copy of PdflbC. Taken together, our results offer a rich source of information to identify novel regulators in DMI resistance.

2.
J Agric Food Chem ; 72(15): 8444-8459, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574108

RESUMO

Cytochrome P450 sterol 14α-demethylase (CYP51) is a key enzyme involved in the sterol biosynthesis pathway and serves as a target for sterol demethylation inhibitors (DMIs). In this study, the 3D structures of three CPY51 paralogues from Calonectria ilicicola (C. ilicicola) were first modeled by AlphaFold2, and molecular docking results showed that CiCYP51A, CiCYP51B, or CiCYP51C proteins individually possessed two active pockets that interacted with DMIs. Our results showed that the three paralogues play important roles in development, pathogenicity, and sensitivity to DMI fungicides. Specifically, CiCYP51A primarily contributed to cell wall integrity maintenance and tolerance to abiotic stresses, and CiCYP51B was implicated in sexual reproduction and virulence, while CiCYP51C exerted negative regulatory effects on sterol 14α-demethylase activity within the ergosterol biosynthetic pathway, revealing its genus-specific function in C. ilicicola. These findings provide valuable insights into developing rational strategies for controlling soybean red crown rot caused by C. ilicicola.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hypocreales , Lanosterol , Lanosterol/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Esteróis , Esterol 14-Desmetilase/química
3.
Mitochondrial DNA B Resour ; 9(4): 493-499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623174

RESUMO

Libelloides sibiricus (Eversmann, 1850) is widely distributed in China, Korea and eastern Russia. To date, few studies have been conducted on this species, with the exception of morphological taxonomy studies. In this study, we sequenced the complete mitochondrial genome (mitogenome) of Libelloides sibiricus, which is 15,811 bp in length, with an overall A + T content of 74.8%, encoding 2 ribosomal RNA genes, 22 transfer RNA genes, 13 protein-coding genes, and a control region. The gene arrangement and components of L. sibiricus are identical to those of most other Neuropteran species. TAA is utilized as the termination codon for most PCGs and TAG for nd1, however, nd6 and atp6 used the incomplete termination codon TA- and cox1, cox2, nd5, cytb had termination codons consisting of only T-. In addition, we selected all known 59 species of Neuroptera from NCBI, and used Sialis hamata, Sialis melania, Sialis longidens and Sialis jiyuni (Megaloptera: Sialidae) as the outgroup. Phylogenetic analysis suggested that the mitogenome of L. sibiricus was the most closely related to L. macaronius and all the owlflies formed the monophyletic group within the superfamily Myrmeleontoidea.

4.
BMC Plant Biol ; 23(1): 614, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044435

RESUMO

Citrus melanose, caused by Diaporthe citri, is one of the most important and widespread fungal diseases of citrus. Previous studies demonstrated that the citrus host was able to trigger the defense response to restrict the spread of D. citri. However, the molecular mechanism underlying this defense response has yet to be elucidated. Here, we used RNA-Seq to explore the gene expression pattern at the early (3 days post infection, dpi) and late (14 dpi) infection stages of citrus leaves in response to D. citri infection, and outlined the differences in transcriptional regulation associated with defense responses. The functional enrichment analysis indicated that the plant cell wall biogenesis was significantly induced at the early infection stage, while the callose deposition response was more active at the late infection stage. CYP83B1 genes of the cytochrome P450 family were extensively induced in the callus deposition-mediated defense response. Remarkably, the gene encoding pectin methylesterase showed the highest upregulation and was only found to be differentially expressed at the late infection stage. Genes involved in the synthesis and regulation of phytoalexin coumarin were effectively activated. F6'H1 and S8H, encoding key enzymes in the biosynthesis of coumarins and their derivatives, were more strongly expressed at the late infection stage than at the early infection stage. Collectively, our study profiled the response pattern of citrus leaves against D. citri infection and provided the transcriptional evidence to support the defense mechanism.


Assuntos
Ascomicetos , Citrus , Xanthomonas , Folhas de Planta/genética , Folhas de Planta/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Xanthomonas/fisiologia
6.
Front Microbiol ; 14: 1147007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799596

RESUMO

Background: The ruminant gastrointestinal contains numerous microbiomes that serve a crucial role in sustaining the host's productivity and health. In recent times, numerous studies have revealed that variations in influencing factors, including the environment, diet, and host, contribute to the shaping of gastrointestinal microbial adaptation to specific states. Therefore, understanding how host and environmental factors affect gastrointestinal microbes will help to improve the sustainability of ruminant production systems. Results: Based on a graphical analysis perspective, this study elucidates the microbial topology and robustness of the gastrointestinal of different ruminant species, showing that the microbial network is more resistant to random attacks. The risk of transmission of high-risk metagenome-assembled genome (MAG) was also demonstrated based on a large-scale survey of the distribution of antibiotic resistance genes (ARG) in the microbiota of most types of ecosystems. In addition, an interpretable machine learning framework was developed to study the complex, high-dimensional data of the gastrointestinal microbial genome. The evolution of gastrointestinal microbial adaptations to the environment in ruminants were analyzed and the adaptability changes of microorganisms to different altitudes were identified, including microbial transcriptional repair. Conclusion: Our findings indicate that the environment has an impact on the functional features of microbiomes in ruminant. The findings provide a new insight for the future development of microbial resources for the sustainable development in agriculture.

7.
Microbiol Spectr ; 11(6): e0233523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37812002

RESUMO

IMPORTANCE: In this study, we used Alternaria alternata as a biological model to report the role of StuA in phytopathogenic fungi. Our findings indicated that StuA is required for Alternaria citri toxin (ACT) biosynthesis and fungal virulence. In addition, StuA physically interacts with PacC. Disruption of stuA or pacC led to decreased expression of seven toxin biosynthetic genes (ACCT) and toxin production. PacC could recognize and bind to the promoter regions of ACTT6 and ACTTR. Our results revealed a previously unrecognized (StuA-PacC)→ACTTR module for the biosynthesis of ACT in A. alternata, which also provides a framework for the study of StuA in other fungi.


Assuntos
Citrus , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Citrus/microbiologia , Virulência , Regulação Fúngica da Expressão Gênica , Concentração de Íons de Hidrogênio , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia
8.
Nucleic Acids Res ; 51(19): 10238-10260, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37650633

RESUMO

Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.


Assuntos
Fusarium , Histonas , Ferro , Cromatina , Histonas/genética , Histonas/metabolismo , Ferro/metabolismo , Nucleossomos , Sideróforos/genética , Fusarium/metabolismo
9.
Pestic Biochem Physiol ; 193: 105456, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248022

RESUMO

Clarireedia spp. is a destructive phytopathogenic fungus that causes turf dollar spot of bent-grass, leading to widespread lawn death. In this study, we explored the antifungal capability of 6-pentyl-2H-pyran-2-one (6PP), a natural metabolite volatilized by microorganisms, which plays an important role in the biological control of turfgrass dollar spot. However, the mechanisms by which 6PP inhibits Clarireedia jacksonii remain unknown. In the present study, C. jacksonii mycelial growth was inhibited by the 6PP treatment and the 6PP treatment damaged cell membrane integrity, causing an increase in relative conduc-tivity. Furthermore, physiological and biochemistry assay showed that 6PP treatment can enhance reactive oxygen species (ROS) levels, malondialdehyde (MDA) content obviously increased with 6PP exposure, increased alchohol dehydrogenase (ADH) and depleted acetalde-hyde dehydrogenase (ALDH), and activated the activities of many antioxidant enzymes in C. jacksonii. Gen Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that some genes in C. jacksonii after 6PP treatment related to integrity of the cell wall and membrane, and oxidative stress were significantly downregulated. It is worth mentioning that the fatty acid degradation pathway is significantly upregulated, with an increase in ATP content and ATP synthase activity, which may promote fungal cell apoptosis. Moreover, we found that the expression of ABC transporters, and glutathione metabolism encoding genes were increased to respond to external stimuli. Taken together, these findings revealed the potential antifungal mechanism of 6PP against Clarireedia spp., which also provides a theoretical basis for the commercial utilization of 6PP as a green pesticide in the future.


Assuntos
Antifúngicos , Perfilação da Expressão Gênica , Antifúngicos/farmacologia , Oxirredutases , Trifosfato de Adenosina , Transcriptoma
10.
Pestic Biochem Physiol ; 190: 105311, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36740345

RESUMO

The calcium-calcineurin and high-osmolarity glycerol (HOG) pathways play crucial roles in fungal development, pathogenicity, and in responses to various environmental stresses. However, interaction of these pathways in regulating fungicide sensitivity remains largely unknown in phytopathogenic fungi. In this study, we investigated the function of the calcium-calcineurin signalling pathway in Fusarium graminearum, the causal agent of Fusarium head blight. Inhibitors of Ca2+ and calcineurin enhanced antifungal activity of tebuconazole (an azole fungicide) against F. graminearum. Deletion of the putative downstream transcription factor FgCrz1 resulted in significantly increased sensitivity of F. graminearum to tebuconazole. FgCrz1-GFP was translocated to the nucleus upon tebuconazole treatment in a calcineurin-dependent manner. In addition, deletion of FgCrz1 increased the phosphorylation of FgHog1 in response to tebuconazole. Moreover, the calcium-calcineurin and HOG signalling pathways exhibited synergistic effect in regulating pathogenicity and sensitivity of F. graminearum to tebuconazole and multiple other stresses. RNA-seq data revealed that FgCrz1 regulated expression of a set of non-CYP51 genes that are associated with tebuconazole sensitivity, including multidrug transporters, membrane lipid biosynthesis and metabolism, and cell wall organization. Our findings demonstrate that the calcium-calcineurin and HOG pathways act coordinately to orchestrate tebuconazole sensitivity and pathogenicity in F. graminearum, which may provide novel insights in management of Fusarium disease.


Assuntos
Fungicidas Industriais , Fusarium , Glicerol/metabolismo , Cálcio/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Calcineurina/farmacologia , Virulência/genética , Concentração Osmolar , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia
11.
J Fungi (Basel) ; 8(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36354919

RESUMO

Isaria cicadae is a famous edible and medicinal fungus in China and Asia. The molecular basis of morphogenesis and synnemal formation needs to be understood in more detail because this is the main source of biomass production in I. cicadae. In the present study, a fruiting body formation-related gene with a glycosylphosphatidylinositol (GPI) anchoring protein (GPI-Ap) gene homolog IcFBR1 was identified by screening random insertion mutants. Targeted deletion of IcFBR1 resulted in abnormal formation of synnemata, impairing aerial hyphae growth and sporulation. The IcFBR1 mutants were defective in the utilization of carbon sources with reduced polysaccharide contents and the regulation of amylase and protease activities. Transcriptome analysis of ΔIcfbr1 showed that IcFBR1 deletion influenced 49 gene ontology terms, including 23 biological processes, 9 molecular functions, and 14 cellular components. IcFBR1 is therefore necessary for regulating synnemal development, secondary metabolism, and nutrient utilization in this important edible and medicinal fungus. This is the first report illustrating that the function of IcFBR1 is associated with the synnemata in I. cicadae.

12.
Front Plant Sci ; 13: 1039094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388468

RESUMO

Highly efficient genetic transformation technology is greatly beneficial for crop gene function analysis and precision breeding. However, the most commonly used genetic transformation technology for woody plants, mediated by Agrobacterium tumefaciens, is time-consuming and inefficient, which limits its utility for gene function analysis. In this study, a simple, universal, and highly efficient genetic transformation technology mediated by A. rhizogenes K599 is described. This technology can be applied to multiple citrus genotypes, and only 2-8 weeks were required for the entire workflow. Genome-editing experiments were simultaneously conducted using 11 plasmids targeting different genomic positions and all corresponding transformants with the target knocked out were obtained, indicating that A. rhizogenes-mediated genome editing was highly efficient. In addition, the technology is advantageous for investigation of specific genes (such as ACD2) for obtaining "hard-to-get" transgenic root tissue. Furthermore, A. rhizogenes can be used for direct viral vector inoculation on citrus bypassing the requirement for virion enrichment in tobacco, which facilitates virus-induced gene silencing and virus-mediated gene expression. In summary, we established a highly efficient genetic transformation technology bypassing tissue culture in citrus that can be used for genome editing, gene overexpression, and virus-mediated gene function analysis. We anticipate that by reducing the cost, required workload, experimental period, and other technical obstacles, this genetic transformation technology will be a valuable tool for routine investigation of endogenous and exogenous genes in citrus.

13.
Front Microbiol ; 13: 924476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783406

RESUMO

Histone methylation, which is critical for transcriptional regulation and various biological processes in eukaryotes, is a reversible dynamic process regulated by histone methyltransferases (HMTs) and histone demethylases (HDMs). This study determined the function of 5 HMTs (AaDot1, AaHMT1, AaHnrnp, AaSet1, and AaSet2) and 1 HDMs (AaGhd2) in the phytopathogenic fungus Alternaria alternata by analyzing targeted gene deletion mutants. The vegetative growth, conidiation, and pathogenicity of ∆AaSet1 and ∆AaSet2 were severely inhibited indicating that AaSet1 and AaSet2 play critical roles in cell development in A. alternata. Multiple stresses analysis revealed that both AaSet1 and AaSet2 were involved in the adaptation to cell wall interference agents and osmotic stress. Meanwhile, ∆AaSet1 and ∆AaSet2 displayed serious vegetative growth defects in sole carbon source medium, indicating that AaSet1 and AaSet2 play an important role in carbon source utilization. In addition, ∆AaSet2 colony displayed white in color, while the wild-type colony was dark brown, indicating AaSet2 is an essential gene for melanin biosynthesis in A. alternata. AaSet2 was required for the resistance to oxidative stress. On the other hand, all of ∆AaDot1, ∆AaHMT1, and ∆AaGhd2 mutants displayed wild-type phenotype in vegetative growth, multi-stress resistance, pathogenicity, carbon source utilization, and melanin biosynthesis. To explore the regulatory mechanism of AaSet1 and AaSet2, RNA-seq of these mutants and wild-type strain was performed. Phenotypes mentioned above correlated well with the differentially expressed genes in ∆AaSet1 and ∆AaSet2 according to the KEGG and GO enrichment results. Overall, our study provides genetic evidence that defines the central role of HMTs and HDMs in the pathological and biological functions of A. alternata.

14.
Microbiol Res ; 254: 126895, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34742104

RESUMO

The emergence and spread of drug-resistant microorganisms that have acquired new resistance mechanisms, leading to antibiotic resistance, continue to threaten the health of humans and animals worldwide. Non-human primates (NHPs), as close living relatives of human beings in the world, have a high degree of genetic and physiological similarity to humans. However, despite its importance, we lack a comprehensive characterization or understanding of the similarities and differences of the antibiotic resistance genes of the gut microbiome carried by non-human primates and humans. In the present study, the diversity and abundance of antibiotic resistance genes carried by the gut microbiota of cynomolgus monkeys (Macaca fascicularis) were investigated by metagenomic analysis. In total, 60 resistance types conferring resistance to 11 categories of antibiotics were identified in the gut microbiome of cynomolgus monkeys. Interestingly, the composition and abundance of ARGs carried by the gut microbiota of cynomolgus monkeys can be significantly affected by dietary changes. Moreover, we found that all ARG types carried by humans are also present in cynomolgus monkeys. The tetracycline resistance gene tet(37) is evolutionarily conserved and highly homologous. Taken together, our study provides a comprehensive overview of the diversity and richness of ARGs in the gut microbiota of cynomolgus monkeys and underlines the potentially crucial role of diet in the gut health of monkeys and humans.


Assuntos
Resistência Microbiana a Medicamentos , Microbioma Gastrointestinal , Haplorrinos , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Haplorrinos/microbiologia , Metagenômica
15.
Syst Appl Microbiol ; 45(1): 126279, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34839036

RESUMO

Chickpea is the third most important grain legume worldwide. This is due in part to its high protein content that results from its ability to acquire bioavailable nitrogen when colonized by diverse, nitrogen fixing Mesorhizobium species. However, the diversity and distribution of mesorhizobia communities may depend on their adaptation to soil conditions. Therefore, this study was initiated in order to isolate and investigate the diversity and taxonomic identities of chickpea-nodulating Mesorhizobium species from low pH soils of Ethiopia. A total of 81 rhizobia strains were isolated from chickpea nodules harvested from low pH soils throughout Ethiopia, and their genomes were sequenced and assembled. Considering a representative set of the best-sequenced 81 genomes, the average sequence depth was 30X, with estimated average genome sizes of approximately 7 Mbp. Annotation of the assembled genome predicted an average of 7,453 protein-coding genes. Concatenation of 400 universal PhyloPhlAn conserved genes present in the genomes of all 81 strains allowed detailed phylogenetic analysis, from which eight well-supported species were identified, including M.opportunistum, M.australicum, Mesorhizobium sp. LSJC280BOO, M.wenxiniae, M.amorphae, M.loti and M.plurifarium, as well as a novel species. Phylogenetic reconstructions based on the symbiosis-related (nodC and nifH) genes were different from the core genes and consistent with horizontal transfer of the symbiotic island. The two major genomic groups, M.plurifarium and M.loti, were widely distributed in almost all the sites. The geographic pattern of genomic diversity indicated there was no relationship between geographic and genetic distance (r = 0.01, p > 0.01). In conclusion, low pH soils in Ethiopia harbored a diverse group of Mesorhizobium species, several of which were not previously known to nodulate chickpea.


Assuntos
Cicer , Mesorhizobium , DNA Bacteriano , Etiópia , Genômica , Concentração de Íons de Hidrogênio , Mesorhizobium/genética , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Solo , Simbiose
16.
Microbiol Res ; 256: 126915, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34953292

RESUMO

The ability to cope with environmental abiotic stress and biotic stress is crucial for the survival of plants and microorganisms, which enable them to occupy multiple niches in the environment. Previous studies have shown that transcription factors play crucial roles in regulating various biological processes including multiple stress tolerance and response in eukaryotes. This work identified multiple critical transcription factor genes, metabolic pathways and gene ontology (GO) terms related to abiotic stress response were broadly activated by analyzing the transcriptome of phytopathogenic fungus Alternaria alternata under metal ions stresses, oxidative stress, salt stresses, and host-pathogen interaction. We investigated the biological functions and regulatory roles of the bZIP transcriptional factor (TF) genes in the phytopathogenic fungus A.alternata by analyzing targeted gene disrupted mutants. Morphological analysis provides evidence that the bZIP transcription factors (Gcn4, MeaB, Atf1, the ER stress regulator Hac1, and the all development altered-1 gene Ada1) are required for morphogenesis as the colony morphology of these gene deletion mutants was significantly different from that of the wild-type. In addition, bZIPs are involved in the resistance to multiple stresses such as oxidative stress (Ada1, Yap1, MetR) and virulence (Hac1, MetR, Yap1, Ada1) at varying degrees. Transcriptome data demonstrated that the inactivation of bZIPs (Hac1, Atf1, Ada1 and Yap1) significantly affected many genes in multiple critical metabolism pathways and gene ontology (GO) terms. Moreover,the ΔHac1 mutants displayed reduced aerial hypha and are hypersensitivity to endoplasmic reticulum disruptors such as tunicamycin and dithiothreitol. Transcriptome analysis showed that inactivation of Hac1 significantly affected the proteasome process and its downstream unfolded protein binding, indicating that Hac1 participates in the endoplasmic reticulum stress response through the conserved unfolded protein response. Taken together, our findings reveal that bZIP transcription factors function as key regulators of fungal morphogenesis, abiotic stress response and pathogenesis, and expand our understanding of how microbial pathogens utilize these genes to deal with environmental stresses and achieve successful infection in the host plant.


Assuntos
Alternaria , Fatores de Transcrição de Zíper de Leucina Básica , Estresse Fisiológico , Alternaria/patogenicidade , Alternaria/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Fúngicas
17.
Front Microbiol ; 13: 1038034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704565

RESUMO

The Isaria cicadae, is well known highly prized medicinal mushroom with great demand in food and pharmaceutical industry. Due to its economic value and therapeutic uses, natural sources of wild I. cicadae are over-exploited and reducing continuously. Therefore, commercial cultivation in controlled environment is an utmost requirement to fulfill the consumer's demand. Due to the lack of knowledge on fruiting body (synnemata) development and regulation, commercial cultivation is currently in a difficult situation. In the growth cycle of macrofungi, such as mushrooms, light is the main factor affecting growth and development, but so far, specific effects of light on the growth and development of I. cicadae is unknown. In this study, we identified a blue light receptor white-collar-1 (Icwc-1) gene homologue with well-defined functions in morphological development in I. cicadae based on gene knockout technology and transcriptomic analysis. It was found that the Icwc-1 gene significantly affected hyphal growth and fruiting body development. This study confirms that Icwc-1 acts as an upstream regulatory gene that regulates genes associated with fruiting body formation, pigment-forming genes, and related genes for enzyme synthesis. Transcriptome data analysis also found that Icwc-1 affects many important metabolic pathways of I. cicadae, i.e., amino acid metabolism and fatty acid metabolism. The above findings will not only provide a comprehensive understanding about the molecular mechanism of light regulation in I. cicadae, but also provide new insights for future breeding program and improving this functional food production.

18.
Front Microbiol ; 12: 783633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880849

RESUMO

Histone acetylation, which is critical for transcriptional regulation and various biological processes in eukaryotes, is a reversible dynamic process regulated by HATs and HDACs. This study determined the function of 6 histone acetyltransferases (HATs) (Gcn5, RTT109, Elp3, Sas3, Sas2, Nat3) and 6 histone deacetylases (HDACs) (Hos2, Rpd3, Hda1, Hos3, Hst2, Sir2) in the phytopathogenic fungus Alternaria alternata by analyzing targeted gene deletion mutants. Our data provide evidence that HATs and HDACs are both required for mycelium growth, cell development and pathogenicity as many gene deletion mutants (ΔGcn5, ΔRTT109, ΔElp3, ΔSas3, ΔNat3, ΔHos2, and ΔRpd3) displayed reduced growth, conidiation or virulence at varying degrees. In addition, HATs and HDACs are involved in the resistance to multiple stresses such as oxidative stress (Sas3, Gcn5, Elp3, RTT109, Hos2), osmotic stress (Sas3, Gcn5, RTT109, Hos2), cell wall-targeting agents (Sas3, Gcn5, Hos2), and fungicide (Gcn5, Hos2). ΔGcn5, ΔSas3, and ΔHos2 displayed severe growth defects on sole carbon source medium suggesting a vital role of HATs and HDACs in carbon source utilization. More SNPs were generated in ΔGcn5 in comparison to wild-type when they were exposed to ultraviolet ray. Moreover, ΔRTT109, ΔGcn5, and ΔHos2 showed severe defects in resistance to DNA-damaging agents, indicating the critical role of HATs and HDACs in DNA damage repair. These phenotypes correlated well with the differentially expressed genes in ΔGcn5 and ΔHos2 that are essential for carbon sources metabolism, DNA damage repair, ROS detoxification, and asexual development. Furthermore, Gcn5 is required for the acetylation of H3K4. Overall, our study provides genetic evidence to define the central role of HATs and HDACs in the pathological and biological functions of A. alternata.

19.
J Fungi (Basel) ; 7(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34946995

RESUMO

In the present study, we identified six GATA transcription factors (AaAreA, AaAreB, AaLreA, AaLreB, AaNsdD, and AaSreA) and characterized their functions in response to environmental stress and virulence in the tangerine pathotype of Alternaria alternata. The targeted gene knockout of each of the GATA-coding genes decreased the growth to varying degrees. The mutation of AaAreA, AaAreB, AaLreB, or AaNsdD decreased the conidiation. All the GATA transcription factors were found to be required for tolerance to cumyl hydroperoxide and tert-butyl-hydroperoxide (oxidants) and Congo red (a cell-wall-destructing agent). Pathogenicity assays assessed on detached citrus leaves revealed that mutations of AaAreA, AaLreA, AaLreB, or AaNsdD significantly decreased the fungal virulence. A comparative transcriptome analysis between the ∆AreA mutant and the wild-type strain revealed that the inactivation of AaAreA led to alterations in the expression of genes involved in a number of biological processes, including oxidoreductase activity, amino acid metabolism, and secondary metabolite biogenesis. Taken together, our findings revealed that GATA-coding genes play diverse roles in response to environmental stress and are important regulators involved in fungal development, conidiation, ROS detoxification, as well as pathogenesis. This study, for the first time, systemically underlines the critical role of GATA transcription factors in response to environmental stress and virulence in A. alternata.

20.
J Fungi (Basel) ; 7(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34575787

RESUMO

The fungal pathogen Diaporthe citri is a major cause of diseases in citrus. One common disease is melanose, responsible for large economic losses to the citrus fruit industry. However, very little is known about the epidemiology and genetic structure of D. citri. In this study, we analyzed 339 isolates from leaves and fruits with melanose symptoms from five provinces in southern China at 14 polymorphic simple sequence repeat (SSR) loci and the mating type idiomorphs. The genetic variations were analyzed at three levels with separate samples: among provinces, among orchards within one county, and among trees within one orchard. The five provincial populations from Fujian, Zhejiang, Jiangxi, Hunan, and Guizhou were significantly differentiated, while limited differences were found among orchards from the same county or among trees from the same orchard. STRUCTURE analysis detected two genetic clusters in the total sample, with different provincial subpopulations showing different frequencies of isolates in these two clusters. Mantel analysis showed significant positive correlation between genetic and geographic distances, consistent with geographic separation as a significant barrier to gene flow in D. citri in China. High levels of genetic diversity were found within individual subpopulations at all three spatial scales of analyses. Interestingly, most subpopulations at all three spatial scales had the two mating types in similar frequencies and with alleles at the 14 SSR loci not significantly different from linkage equilibrium. Indeed, strains with different mating types and different multilocus genotypes were frequently isolated from the same leaves and fruits. The results indicate that sexual reproduction plays an important role in natural populations of D. citri in southern China and that its ascospores likely represent an important contributor to citrus disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA