Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 18(4): e1010165, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35452455

RESUMO

The Mus81-Eme1 structure-specific endonuclease is crucial for the processing of DNA recombination and late replication intermediates. In fission yeast, stimulation of Mus81-Eme1 in response to DNA damage at the G2/M transition relies on Cdc2CDK1 and DNA damage checkpoint-dependent phosphorylation of Eme1 and is critical for chromosome stability in absence of the Rqh1BLM helicase. Here we identify Rad3ATR checkpoint kinase consensus phosphorylation sites and two SUMO interacting motifs (SIM) within a short N-terminal domain of Eme1 that is required for cell survival in absence of Rqh1BLM. We show that direct phosphorylation of Eme1 by Rad3ATR is essential for catalytic stimulation of Mus81-Eme1. Chk1-mediated phosphorylation also contributes to the stimulation of Mus81-Eme1 when combined with phosphorylation of Eme1 by Rad3ATR. Both Rad3ATR- and Chk1-mediated phosphorylation of Eme1 as well as the SIMs are critical for cell fitness in absence of Rqh1BLM and abrogating bimodal phosphorylation of Eme1 along with mutating the SIMs is incompatible with rqh1Δ cell viability. Our findings unravel an elaborate regulatory network that relies on the poorly structured N-terminal domain of Eme1 and which is essential for the vital functions Mus81-Eme1 fulfills in absence of Rqh1BLM.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
iScience ; 21: 31-41, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31654852

RESUMO

During DNA replication stress, stalled replication forks need to be stabilized to prevent fork collapse and genome instability. The AAA + ATPase WRNIP1 (Werner Helicase Interacting Protein 1) has been implicated in the protection of stalled replication forks from nucleolytic degradation, but the underlying molecular mechanism has remained unclear. Here we show that WRNIP1 exerts its protective function downstream of fork reversal. Unexpectedly though, WRNIP1 is not part of the well-studied BRCA2-dependent branch of fork protection but seems to protect the junction point of reversed replication forks from SLX4-mediated endonucleolytic degradation, possibly by directly binding to reversed replication forks. This function is specific to the shorter, less abundant, and less conserved variant of WRNIP1. Overall, our data suggest that in the absence of BRCA2 and WRNIP1 different DNA substrates are generated at reversed forks but that nascent strand degradation in both cases depends on the activity of exonucleases and structure-specific endonucleases.

3.
Mol Cell ; 76(1): 27-43.e11, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31447390

RESUMO

Cancer cells acquire unlimited proliferative capacity by either re-expressing telomerase or inducing alternative lengthening of telomeres (ALT), which relies on telomere recombination. Here, we show that ALT recombination requires coordinate regulation of the SMX and BTR complexes to ensure the appropriate balance of resolution and dissolution activities at recombining telomeres. Critical to this control is SLX4IP, which accumulates at ALT telomeres and interacts with SLX4, XPF, and BLM. Loss of SLX4IP increases ALT-related phenotypes, which is incompatible with cell growth following concomitant loss of SLX4. Inactivation of BLM is sufficient to rescue telomere aggregation and the synthetic growth defect in this context, suggesting that SLX4IP favors SMX-dependent resolution by antagonizing promiscuous BLM activity during ALT recombination. Finally, we show that SLX4IP is inactivated in a subset of ALT-positive osteosarcomas. Collectively, our findings uncover an SLX4IP-dependent regulatory mechanism critical for telomere maintenance in ALT cancer cells.


Assuntos
Neoplasias Ósseas/enzimologia , Proteínas de Transporte/metabolismo , Osteossarcoma/enzimologia , RecQ Helicases/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proteínas de Transporte/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos Knockout , Camundongos SCID , Osteossarcoma/genética , Osteossarcoma/patologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RecQ Helicases/genética , Recombinases/genética , Recombinases/metabolismo , Transdução de Sinais , Telômero/genética , Telômero/patologia
4.
Nat Rev Mol Cell Biol ; 18(5): 315-330, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28327556

RESUMO

Structure-specific endonucleases (SSEs) have key roles in DNA replication, recombination and repair, and emerging roles in transcription. These enzymes have specificity for DNA secondary structure rather than for sequence, and therefore their activity must be precisely controlled to ensure genome stability. In this Review, we discuss how SSEs are controlled as part of genome maintenance pathways in eukaryotes, with an emphasis on the elaborate mechanisms that regulate the members of the major SSE families - including the xeroderma pigmentosum group F-complementing protein (XPF) and MMS and UV-sensitive protein 81 (MUS81)-dependent nucleases, and the flap endonuclease 1 (FEN1), XPG and XPG-like endonuclease 1 (GEN1) enzymes - during processes such as DNA adduct repair, Holliday junction processing and replication stress. We also discuss newly characterized connections between SSEs and other classes of DNA-remodelling enzymes and cell cycle control machineries, which reveal the importance of SSE scaffolds such as the synthetic lethal of unknown function 4 (SLX4) tumour suppressor for the maintenance of genome stability.


Assuntos
Endonucleases/metabolismo , Instabilidade Genômica , Animais , Ciclo Celular , Reparo do DNA , Replicação do DNA , Humanos , Proteínas Associadas à Matriz Nuclear/metabolismo
5.
Mol Cell Oncol ; 3(2): e1008297, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27308578

RESUMO

Replication stress has emerged as a key driver of oncogenesis but also represents an Achilles' heel of cancer cells. Newly reported SUMO binding and SUMO ligase functions of the DNA repair protein SLX4 that influence the outcome of replication stress open new avenues for investigating the roles played by SLX4 in tumorigenesis.

6.
Mol Cell ; 57(1): 123-37, 2015 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-25533188

RESUMO

The SLX4 Fanconi anemia protein is a tumor suppressor that may act as a key regulator that engages the cell into specific genome maintenance pathways. Here, we show that the SLX4 complex is a SUMO E3 ligase that SUMOylates SLX4 itself and the XPF subunit of the DNA repair/recombination XPF-ERCC1 endonuclease. This SLX4-dependent activity is mediated by a remarkably specific interaction between SLX4 and the SUMO-charged E2 conjugating enzyme UBC9 and relies not only on newly identified SUMO-interacting motifs (SIMs) in SLX4 but also on its BTB domain. In contrast to its ubiquitin-binding UBZ4 motifs, SLX4 SIMs are dispensable for its DNA interstrand crosslink repair functions. Instead, while detrimental in response to global replication stress, the SUMO E3 ligase activity of the SLX4 complex is critical to prevent mitotic catastrophe following common fragile site expression.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Genoma , Subunidades Proteicas/metabolismo , Recombinases/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Replicação do DNA , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Instabilidade Genômica , Humanos , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinases/genética , Alinhamento de Sequência , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
7.
Nat Struct Mol Biol ; 20(5): 598-603, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23584455

RESUMO

Structure-specific DNA endonucleases have critical roles during DNA replication, repair and recombination, yet they also have the potential for causing genome instability. Controlling these enzymes may be essential to ensure efficient processing of ad hoc substrates and to prevent random, unscheduled processing of other DNA structures, but it is unknown whether structure-specific endonucleases are regulated in response to DNA damage. Here, we uncover DNA damage-induced activation of Mus81-Eme1 Holliday junction resolvase in fission yeast. This new regulation requires both Cdc2(CDK1)- and Rad3(ATR)-dependent phosphorylation of Eme1. Mus81-Eme1 activation prevents gross chromosomal rearrangements in cells lacking the BLM-related DNA helicase Rqh1. We propose that linking Mus81-Eme1 DNA damage-induced activation to cell-cycle progression ensures efficient resolution of Holliday junctions that escape dissolution by Rqh1-TopIII while preventing unnecessary DNA cleavages.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Resolvases de Junção Holliday/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Modelos Biológicos , Fosforilação , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais
8.
Nat Genet ; 43(2): 147-52, 2011 02.
Artigo em Inglês | MEDLINE | ID: mdl-21240276

RESUMO

The evolutionarily conserved SLX4 protein, a key regulator of nucleases, is critical for DNA damage response. SLX4 nuclease complexes mediate repair during replication and can also resolve Holliday junctions formed during homologous recombination. Here we describe the phenotype of the Btbd12 knockout mouse, the mouse ortholog of SLX4, which recapitulates many key features of the human genetic illness Fanconi anemia. Btbd12-deficient animals are born at sub-Mendelian ratios, have greatly reduced fertility, are developmentally compromised and are prone to blood cytopenias. Btbd12(-/-) cells prematurely senesce, spontaneously accumulate damaged chromosomes and are particularly sensitive to DNA crosslinking agents. Genetic complementation reveals a crucial requirement for Btbd12 (also known as Slx4) to interact with the structure-specific endonuclease Xpf-Ercc1 to promote crosslink repair. The Btbd12 knockout mouse therefore establishes a disease model for Fanconi anemia and genetically links a regulator of nuclease incision complexes to the Fanconi anemia DNA crosslink repair pathway.


Assuntos
Anemia de Fanconi/genética , Recombinases/genética , Recombinases/fisiologia , Animais , Senescência Celular , Reagentes de Ligações Cruzadas/farmacologia , Dano ao DNA , Feminino , Fibroblastos/metabolismo , Teste de Complementação Genética , Células-Tronco Hematopoéticas , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Knockout
9.
Cell ; 138(1): 78-89, 2009 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-19596236

RESUMO

Structure-specific endonucleases resolve DNA secondary structures generated during DNA repair and recombination. The yeast 5' flap endonuclease Slx1-Slx4 has received particular attention with the finding that Slx4 has Slx1-independent key functions in genome maintenance. Although Slx1 is a highly conserved protein in eukaryotes, no orthologs of Slx4 were reported other than in fungi. Here we report the identification of Slx4 orthologs in metazoa, including fly MUS312, essential for meiotic recombination, and human BTBD12, an ATM/ATR checkpoint kinase substrate. Human SLX1-SLX4 displays robust Holliday junction resolvase activity in addition to 5' flap endonuclease activity. Depletion of SLX1 and SLX4 results in 53BP1 foci accumulation and H2AX phosphorylation as well as cellular hypersensitivity to MMS. Furthermore, we show that SLX4 binds the XPF(ERCC4) and MUS81 subunits of the XPF-ERCC1 and MUS81-EME1 endonucleases and is required for DNA interstrand crosslink repair. We propose that SLX4 acts as a docking platform for multiple structure-specific endonucleases.


Assuntos
Reparo do DNA , Recombinases/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Endonucleases/metabolismo , Instabilidade Genômica , Humanos , Dados de Sequência Molecular , Recombinases/química , Recombinases/genética , Recombinação Genética , Alinhamento de Sequência
10.
Mol Biol Cell ; 15(1): 71-80, 2004 01.
Artigo em Inglês | MEDLINE | ID: mdl-14528010

RESUMO

In most eukaryotes, genes encoding ribosomal RNAs (rDNA) are clustered in long tandem head-to-tail repeats. Studies of Saccharomyces cerevisiae have indicated that rDNA copy number is maintained through recombination events associated with site-specific blockage of replication forks (RFs). Here, we describe two Schizosaccharomyces pombe proteins, homologs of S. cerevisiae Slx1 and Slx4, as subunits of a novel type of endonuclease that maintains rDNA copy number. The Slx1-Slx4-dependent endonuclease introduces single-strand cuts in duplex DNA on the 3' side of junctions with single-strand DNA. Deletion of Slx1 or Rqh1 RecQ-like DNA helicase provokes rDNA contraction, whereas simultaneous elimination of Slx1-Slx4 endonuclease and Rqh1 is lethal. Slx1 associates with chromatin at two foci characteristic of the two rDNA repeat loci in S. pombe. We propose a model in which the Slx1-Slx4 complex is involved in the control of the expansion and contraction of the rDNA loci by initiating recombination events at stalled RFs.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , DNA Ribossômico , Endonucleases/metabolismo , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Subunidades Proteicas/metabolismo , Recombinação Genética , Schizosaccharomyces/genética , Alinhamento de Sequência
11.
Mol Biol Cell ; 15(2): 552-62, 2004 02.
Artigo em Inglês | MEDLINE | ID: mdl-14617801

RESUMO

Mus81 is a highly conserved endonuclease with homology to the XPF subunit of the XPF-ERCC1 complex. In yeast Mus81 associates with a second subunit, Eme1 or Mms4, which is essential for endonuclease activity in vitro and for in vivo function. Human Mus81 binds to a homolog of fission yeast Eme1 in vitro and in vivo. We show that recombinant Mus81-Eme1 cleaves replication forks, 3' flap substrates, and Holliday junctions in vitro. By use of differentially tagged versions of Mus81 and Eme1, we find that Mus81 associates with Mus81 and that Eme1 associates with Eme1. Thus, complexes containing two or more Mus81-Eme1 units could function to coordinate substrate cleavage in vivo. Down-regulation of Mus81 by RNA interference reduces mitotic recombination in human somatic cells. The recombination defect is rescued by expression of a bacterial Holliday junction resolvase. These data provide direct evidence for a role of Mus81-Eme1 in mitotic recombination in higher eukaryotes and support the hypothesis that Mus81-Eme1 resolves Holliday junctions in vivo.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Mitose/genética , Interferência de RNA , Recombinação Genética/genética , Proteínas de Schizosaccharomyces pombe/genética , Sequência de Aminoácidos , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Sobrevivência Celular/fisiologia , Clonagem Molecular , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/genética , Células HeLa , Resolvases de Junção Holliday/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
Mol Cell ; 12(3): 747-59, 2003 09.
Artigo em Inglês | MEDLINE | ID: mdl-14527419

RESUMO

Functional studies strongly suggest that the Mus81-Eme1 complex resolves Holliday junctions (HJs) in fission yeast, but in vitro it preferentially cleaves flexible three-way branched structures that model replication forks or 3' flaps. Here we report that a nicked HJ is the preferred substrate of endogenous and recombinant Mus81-Eme1. Cleavage occurs specifically on the strand that opposes the nick, resulting in resolution of the structure into linear duplex products. Resolving cuts made by the endogenous Mus81-Eme1 complex on an intact HJ are quasi-simultaneous, indicating that Mus81-Eme1 resolves HJs by a nick and counternick mechanism, with a large rate enhancement of the second cut arising from the flexible nature of the nicked HJ intermediate. Recombinant Mus81-Eme1 is ineffective at making the first cut. We also report that HJs accumulate in a DNA polymerase alpha mutant that lacks Mus81, providing further evidence that the Mus81-Eme1 complex targets HJs in vivo.


Assuntos
Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Endonucleases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Células Cultivadas , DNA/genética , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Regulação Enzimológica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Substâncias Macromoleculares , Mutação/genética , Conformação de Ácido Nucleico , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Especificidade por Substrato
13.
Mol Cell ; 8(5): 1117-27, 2001 11.
Artigo em Inglês | MEDLINE | ID: mdl-11741546

RESUMO

Mus81, a protein with homology to the XPF subunit of the ERCC1-XPF endonuclease, is important for replicational stress tolerance in both budding and fission yeast. Human Mus81 has associated endonuclease activity against structure-specific oligonucleotide substrates, including synthetic Holliday junctions. Mus81-associated endonuclease resolves Holliday junctions into linear duplexes by cutting across the junction exclusively on strands of like polarity. In addition, Mus81 protein abundance increases in cells following exposure to agents that block DNA replication. Taken together, these findings suggest a role for Mus81 in resolving Holliday junctions that arise when DNA replication is blocked by damage or by nucleotide depletion. Mus81 is not related by sequence to previously characterized Holliday junction resolving enzymes, and it has distinct enzymatic properties that suggest it uses a novel enzymatic strategy to cleave Holliday junctions.


Assuntos
Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Endonucleases , Sequência de Aminoácidos , Animais , Linhagem Celular , Clonagem Molecular , Dano ao DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae , Alinhamento de Sequência
14.
Cell ; 107(4): 537-48, 2001 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-11719193

RESUMO

Mus81, a fission yeast protein related to the XPF subunit of ERCC1-XPF nucleotide excision repair endonuclease, is essential for meiosis and important for coping with stalled replication forks. These processes require resolution of X-shaped DNA structures known as Holliday junctions. We report that Mus81 and an associated protein Eme1 are components of an endonuclease that resolves Holliday junctions into linear duplex products. Mus81 and Eme1 are required during meiosis at a late step of meiotic recombination. The mus81 meiotic defect is rescued by expression of a bacterial Holliday junction resolvase. These findings constitute strong evidence that Mus81 and Eme1 are subunits of a nuclear Holliday junction resolvase.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Endodesoxirribonucleases/fisiologia , Endonucleases/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Sequência de Aminoácidos , Sítios de Ligação , Dano ao DNA , Reparo do DNA/fisiologia , DNA Fúngico/genética , DNA Fúngico/efeitos da radiação , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Endonucleases/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Resolvases de Junção Holliday , Substâncias Macromoleculares , Meiose/fisiologia , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes de Fusão/fisiologia , Recombinação Genética/fisiologia , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/enzimologia , Schizosaccharomyces/efeitos da radiação , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Transfecção
15.
Nucleic Acids Res ; 29(4): 872-9, 2001 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-11160918

RESUMO

ERCC1-XPF is a structure-specific nuclease with two subunits, ERCC1 and XPF. The enzyme cuts DNA at junctions where a single strand moves 5' to 3' away from a branch point with duplex DNA. This activity has a central role in nucleotide excision repair (NER), DNA cross-link repair and recombination. To dissect the activities of the nuclease it is necessary to investigate the subunits individually, as studies of the enzyme so far have only used the heterodimeric complex. We produced recombinant ERCC1 and XPF separately in Escherichia coli as soluble proteins. Activity was monitored by a sensitive dual incision assay for NER by complementation of cell extracts. XPF and ERCC1 are unstable in mammalian cells in the absence of their partners but we found, surprisingly, that ERCC1 alone could confer some repair to extracts from ERCC1-defective cells. A version of ERCC1 lacking the first 88 non-conserved amino acids was also functional. This indicated that a small amount of active XPF was present in ERCC1 extracts, and immunoassays showed this to be the case. Some repair in XPF-defective extracts could be achieved by adding ERCC1 and XPF proteins together, but not by adding only XPF. The results show for the first time that functional ERCC1-XPF can be formed from separately produced subunits. Protein sequence comparison revealed similarity between the ERCC1 family and the C-terminal region of the XPF family, including the regions of both proteins that are necessary for the ERCC1-XPF heterodimeric interaction. This suggests that the ERCC1 and XPF families are related via an ancient duplication.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Extratos Celulares , Sequência Conservada/genética , Cricetinae , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Dimerização , Escherichia coli , Teste de Complementação Genética , Humanos , Dados de Sequência Molecular , Mutação/genética , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas/química , Proteínas/genética , Proteínas/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
17.
EMBO J ; 16(20): 6281-9, 1997 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-9321407

RESUMO

To restore full genomic integrity in a eukaryotic cell, DNA repair processes have to be coordinated with the resetting of nucleosomal organization. We have established a cell-free system using Drosophila embryo extracts to investigate the mechanism linking de novo nucleosome formation to nucleotide excision repair (NER). Closed-circular DNA containing a uniquely placed cisplatin-DNA adduct was used to follow chromatin assembly specifically from a site of NER. Nucleosome formation was initiated from a target site for NER. The assembly of nucleosomes propagated bidirectionally, creating a regular nucleosomal array extending beyond the initiation site. Furthermore, this chromatin assembly was still effective when the repair synthesis step in the NER process was inhibited.


Assuntos
Cromatina/metabolismo , Reparo do DNA , Animais , Sistema Livre de Células , Cisplatino/metabolismo , DNA/biossíntese , Adutos de DNA/metabolismo , DNA Circular/metabolismo , Drosophila , Embrião não Mamífero , Humanos , Modelos Genéticos , Xenopus
18.
Cell ; 86(6): 887-96, 1996 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-8808624

RESUMO

DNA repair in the eukaryotic cell disrupts local chromatin organization. To investigate whether the resetting of nucleosomal arrays can be linked to the repair process, we developed model systems, with both Xenopus egg extract and human cell extracts, to follow repair and chromatin assembly in parallel on circular DNA templates. Both systems were able to carry out nucleotide excision repair of DNA lesions. We observed that UV-dependent DNA synthesis occurs simultaneously with chromatin assembly, strongly indicating a mechanistic coupling between the two processes. A complementation assay established that chromatin assembly factor I (CAF1) is necessary for this repair associated chromatin formation.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Animais , Linhagem Celular , Fator 1 de Modelagem da Cromatina , Feminino , Humanos , Técnicas In Vitro , Modelos Biológicos , Oócitos/metabolismo , Plasmídeos/metabolismo , Plasmídeos/efeitos da radiação , Proteínas Recombinantes/metabolismo , Raios Ultravioleta , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA