Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004619

RESUMO

Throughout the world, anthropogenic pressure on natural ecosystems is intensifying, notably through urbanisation, economic development, and tourism. Coral reefs have become exposed to stressors related to tourism. To reveal the impact of human activities on fish communities, we used COVID-19-related social restrictions in 2021. In French Polynesia, from February to December 2021, there was a series of restrictions on local activities and international tourism. We assessed the response of fish populations in terms of changes in the species richness and density of fish in the lagoon of Bora-Bora (French Polynesia). We selected sites with varying human pressures-some dedicated to tourism activities, others affected by boat traffic, and control sites with little human presence. Underwater visual surveys demonstrated that fish density and richness differed spatially and temporally. They were lowest on sites affected by boat traffic regardless of pandemic-related restrictions, and when activities were authorised; they were highest during lockdowns. Adult fish density increased threefold on sites usually affected by boat traffic during lockdowns and increased 2.7-fold on eco-tourism sites during international travel bans. Human activities are major drivers of fish density and species richness spatially across the lagoon of Bora-Bora but also temporally across pandemic-related restrictions, with dynamic responses to different restrictions. These results highlight the opportunity provided by pauses in human activities to assess their impact on the environment and confirm the need for sustainable lagoon management in Bora-Bora and similar coral reef settings affected by tourism and boat traffic.

2.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220511, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38310932

RESUMO

Thyroid hormones (TH) are central hormonal regulators, orchestrating gene expression and complex biological processes vital for growth and reproduction in variable environments by triggering specific developmental processes in response to external cues. TH serve distinct roles in different species: inducing metamorphosis in amphibians or teleost fishes, governing metabolic processes in mammals, and acting as effectors of seasonality. These multifaceted roles raise questions about the underlying mechanisms of TH action. Recent evidence suggests a shared ecological role of TH across vertebrates, potentially extending to a significant portion of bilaterian species. According to this model, TH ensure that ontogenetic transitions align with environmental conditions, particularly in terms of energy expenditure, helping animals to match their ontogenetic transition with available resources. This alignment spans post-embryonic developmental transitions common to all vertebrates and more subtle adjustments during seasonal changes. The underlying logic of TH function is to synchronize transitions with the environment. This review briefly outlines the fundamental mechanisms of thyroid signalling and shows various ways in which animals use this hormonal system in natural environments. Lastly, we propose a model linking TH signalling, environmental conditions, ontogenetic trajectory and metabolism. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Assuntos
Receptores dos Hormônios Tireóideos , Hormônios Tireóideos , Animais , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Vertebrados/metabolismo , Peixes/metabolismo , Anfíbios/metabolismo , Mamíferos/metabolismo
3.
Mar Biol ; 170(5): 61, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089665

RESUMO

Coral reefs encompass different habitats that have their own living communities. The present study aimed to test the hypothesis that these different kinds of habitats were characterized by specific soundscapes. Within the lagoon of Bora-Bora, acoustic recordings and visual surveys of substrate type and fish communities were conducted on four reef sites belonging to the three main geomorphological habitats (fringing reef, channel reef, barrier reef) from February to April 2021. Two acoustic parameters were measured for each site and month, during the day and at night: the peak frequency (Fpeak, in Hz) and the corresponding power spectral density (PSDpeak, in dB re 1 µPa2 Hz-1). Our results showed that each geomorphological unit could be characterized by these two parameters and therefore had a specific acoustic signature. Moreover, our study showed that a higher living coral cover was significantly positively correlated with Fpeak in the low-frequency band (50-2000 Hz) during day-time. Although biodiversity indices based on visual surveys did not differ significantly, fish communities and soundscapes were significantly different between sites. Overall, our study underlines the importance of passive acoustics in coral reef monitoring as soundscapes are habitat specific. Supplementary Information: The online version contains supplementary material available at 10.1007/s00227-023-04206-3.

4.
PLoS One ; 18(4): e0284276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37104283

RESUMO

During the COVID-19 pandemic, the reduced exports and imports as well as the lack of activity due to the interruption in the international tourism economy seriously impacted food security in many Pacific Islands. People often returned to natural resources to provide for themselves, their families, or to generate income. On Bora-Bora Island, the major tourist destination in French Polynesia, roadside sales are widespread. Our study analyses the impact of the COVID-19 pandemic on roadside sales activities through a census of roadside stalls on the five Bora-Bora districts conducted before (January and February 2020), during (from March 2020 to October 2021) and after (from November to December 2021) health-related activity and travel restrictions. Our results showed that the marketing system for local products (fruits, vegetables, cooked meals, and fish) increased in the form of roadside sales during the COVID-19 in two of the five districts of Bora-Bora. Roadside selling would be an alternative system for providing food to the population at Bora-Bora during a global crisis and that could reveal itself sustainable after this pandemic.


Assuntos
COVID-19 , Pandemias , Animais , Humanos , Ilhas do Pacífico , COVID-19/epidemiologia , Polinésia , Abastecimento de Alimentos
5.
G3 (Bethesda) ; 13(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36626199

RESUMO

Anemonefish are an emerging group of model organisms for studying genetic, ecological, evolutionary, and developmental traits of coral reef fish. The yellowtail clownfish Amphiprion clarkii possesses species-specific characteristics such as inter-species co-habitation, high intra-species color variation, no anemone specificity, and a broad geographic distribution, that can increase our understanding of anemonefish evolutionary history, behavioral strategies, fish-anemone symbiosis, and color pattern evolution. Despite its position as an emerging model species, the genome of A. clarkii is yet to be published. Using PacBio long-read sequencing and Hi-C chromatin capture technology, we generated a high-quality chromosome-scale genome assembly initially comprised of 1,840 contigs with an N50 of 1,203,211 bp. These contigs were successfully anchored into 24 chromosomes of 843,582,782 bp and annotated with 25,050 protein-coding genes encompassing 97.0% of conserved actinopterygian genes, making the quality and completeness of this genome the highest among all published anemonefish genomes to date. Transcriptomic analysis identified tissue-specific gene expression patterns, with the brain and optic lobe having the largest number of expressed genes. Further analyses revealed higher copy numbers of erbb3b (a gene involved in melanocyte development) in A. clarkii compared with other anemonefish, thus suggesting a possible link between erbb3b and the natural melanism polymorphism observed in A. clarkii. The publication of this high-quality genome, along with A. clarkii's many unique traits, position this species as an ideal model organism for addressing scientific questions across a range of disciplines.


Assuntos
Perciformes , Animais , Perciformes/genética , Peixes/genética , Cromossomos/genética , Genoma , Pigmentação
6.
Mol Cell Endocrinol ; 555: 111727, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35863654

RESUMO

Fish development and acclimation to environmental conditions are strongly mediated by the hormonal endocrine system. In environments contaminated by anthropogenic stressors, hormonal pathway alterations can be detrimental for growth, survival, fitness, and at a larger scale for population maintenance. In the context of increasingly contaminated marine environments worldwide, numerous laboratory studies have confirmed the effect of one or a combination of pollutants on fish hormonal systems. However, this has not been confirmed in situ. In this review, we explore the body of knowledge related to the influence of anthropogenic stressors disrupting fish endocrine systems, recent advances (focusing on thyroid hormones and stress hormones such as cortisol), and potential research perspectives. Through this review, we highlight how harbours can be used as "in situ laboratories" given the variety of anthropogenic stressors (such as plastic, chemical, sound, light pollution, and invasive species) that can be simultaneously investigated in harbours over long periods of time.


Assuntos
Efeitos Antropogênicos , Poluentes Químicos da Água , Animais , Sistema Endócrino , Monitoramento Ambiental , Peixes , Hormônios , Hormônios Tireóideos
7.
Mar Environ Res ; 170: 105451, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34418732

RESUMO

The COVID-19 pandemic led to a global lockdown in mid-2020, leading to a rapid decline in international travel and tourism. In French Polynesia, marine-based tourism activities ceased in March 2020 with the suspension of international flights (i.e., 45 days - between 20th March and 04th May 2020), slowly restarting between May-July as domestic and international visitors returned. The impacts of this rapid change in human activity at reef tourism sites on associated reef fishes was examined at Bora-Bora Island through underwater surveys of five control and nine eco-tourism sites. Our results showed that fish density significantly increased from March to May (i.e., the overall density of fishes increased by 143% and harvested species by 215%), but returned to pre-lockdown levels by August 2020. At the usually busy eco-tourism sites, fish diversity, notably of piscivores, omnivores, and benthic feeders, was higher in the absence of tourists. The impact observed is almost certainly related to short term changes in fish behavior, as any density fluctuations at the population level are unlikely to have happened over such a short time frame. Overall, these findings highlight the influence of human activities on fish communities and underline the need for further research to evaluate the environmental impacts of eco-tourism.


Assuntos
Antozoários , COVID-19 , Recifes de Corais , Turismo , Animais , Controle de Doenças Transmissíveis , Peixes , Humanos , Pandemias , Polinésia
8.
Sci Rep ; 11(1): 14548, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267281

RESUMO

Understanding the processes that shape biodiversity is essential for effective environmental management. Across the world's coral reefs, algal farming damselfish (Stegastes sp.) modify the surrounding benthic community through their creation of algae "farms". Using a long-term monitoring dataset (2005-2019) from Moorea Island, French Polynesia, we investigated whether the density of dusky damselfish (Stegastes nigricans) is associated with benthic habitat composition, the density of predators and/or competitors, and whether the survey area was inside or outside of a Marine Protected Area (MPA). We found no evidence that benthic cover or number of competitors were associated with dusky damselfish densities, both inside and outside MPAs. In contrast, fluctuations in dusky damselfish densities were negatively associated with the density of predators (e.g. Serranidae, Muraenidae and Scorpaenidae) in the preceding year in non-MPA areas, and both within and outside of MPAs when predator densities were high (2005-2010). These results suggest that healthy predator populations may be important for regulating the abundances of keystone species, such as algal farming damselfish, especially when predator densities are high.


Assuntos
Recifes de Corais , Perciformes , Comportamento Predatório , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Perciformes/fisiologia , Polinésia , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA