Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 172146, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569963

RESUMO

Anthropogenic activities have led to the emergence of pharmaceutical pollution in marine ecosystems, posing a significant threat to biodiversity in conjunction with global climate change. While the ecotoxicity of human drugs on aquatic organisms is increasingly recognized, their interactions with environmental factors, such as temperature, remain understudied. This research investigates the physiological effects of the selective serotonin reuptake inhibitor (SSRI), fluoxetine, on two diatom species, Phaeodactylum tricornutum and Thalassiosira weissflogii. Results demonstrate that fluoxetine significantly reduces growth rate and biomass production, concurrently affecting pigment contents and the thermal performance curve (TPC) of the diatoms. Fluoxetine reduces the synthesis of chlorophyll a (Chl a) and carotenoid (Car), indicating inhibition of photosynthesis and photoprotection. Furthermore, fluoxetine decreases the maximum growth rate (µmax) while increasing the optimum temperature (Topt) in both species, suggesting an altered thermal plasticity. This shift is attributed to the observed decrease in the inhibition rate of fluoxetine with rising temperatures. These findings emphasize the physiological impacts and ecological implications of fluoxetine on phytoplankton and underscore the significance of considering interactions between multiple environmental drivers when accessing the ecotoxicity of potential pollutants. The present study provides insights into crucial considerations for evaluating the impacts of pharmaceutical pollution on marine primary producers.


Assuntos
Diatomáceas , Humanos , Diatomáceas/fisiologia , Clorofila A , Fluoxetina/toxicidade , Temperatura , Ecossistema , Preparações Farmacêuticas
2.
Mar Pollut Bull ; 201: 116183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412799

RESUMO

Sesarmid crabs modulate nutrient dynamics of tropical mangroves through their leaf-eating habit. How N enrichment may alter this regulatory role, and the implications for mangrove nutrient dynamics, remain unclear. Using a mesocosm experiment, we tested how N enrichment could change the microphytobenthos (MPB) communities, thus modifying the crabs' diet and their role in nutrient dynamics. The factorial experiment combined with field investigation revealed a significant increase in the relative abundance of cyanobacteria. Stable isotope analysis suggested that the main carbon source of crabs shifted from leaf litter to cyanobacteria in mesocosms under both high (20×) and low (2×) N enrichment treatments. The significantly lower total cellulase activity of crabs in the mesocosms might explain the decreased carbon assimilation from leaf litter. The changes in the MPB and the microbiome with N enrichment in the presence of crabs may drive significantly higher carbon processing rate in tropical mangroves.


Assuntos
Braquiúros , Ecossistema , Animais , Nitrogênio , Carbono , Dieta
3.
Proc Biol Sci ; 291(2015): 20232253, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38228502

RESUMO

Kelp forests are threatened by ocean warming, yet effects of co-occurring drivers such as CO2 are rarely considered when predicting their performance in the future. In Australia, the kelp Ecklonia radiata forms extensive forests across seawater temperatures of approximately 7-26°C. Cool-edge populations are typically considered more thermally tolerant than their warm-edge counterparts but this ignores the possibility of local adaptation. Moreover, it is unknown whether elevated CO2 can mitigate negative effects of warming. To identify whether elevated CO2 could improve thermal performance of a cool-edge population of E. radiata, we constructed thermal performance curves for growth and photosynthesis, under both current and elevated CO2 (approx. 400 and 1000 µatm). We then modelled annual performance under warming scenarios to highlight thermal susceptibility. Elevated CO2 had minimal effect on growth but increased photosynthesis around the thermal optimum. Thermal optima were approximately 16°C for growth and approximately 18°C for photosynthesis, and modelled performance indicated cool-edge populations may be vulnerable in the future. Our findings demonstrate that elevated CO2 is unlikely to offset negative effects of ocean warming on the kelp E. radiata and highlight the potential susceptibility of cool-edge populations to ocean warming.


Assuntos
Kelp , Phaeophyceae , Água do Mar , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Dióxido de Carbono , Mudança Climática , Temperatura , Oceanos e Mares , Aquecimento Global
4.
Sci Total Environ ; 904: 166618, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37643707

RESUMO

Coastal blue carbon ecosystems can be an important nature-based solution for mitigating climate change, when emphasis is given to their protection, management, and restoration. Globally, there has been a rapid increase in blue carbon research in the last few decades, with substantial investments on national scales by the European Union, the USA, Australia, Seychelles, and Belize. Blue carbon ecosystems in South and Southeast Asia are globally diverse, highly productive and could represent a global hotspot for carbon sequestration and storage. To guide future efforts, we conducted a systematic review of the available literature on two primary blue carbon ecosystems-seagrasses and mangroves-across 13 countries in South and Southeast Asia to assess existing national inventories, review current research trends and methodologies, and identify existing knowledge gaps. Information related to various aspects of seagrass and mangrove ecosystems was extracted from 432 research articles from 1967 to 2022. We find that: (1) blue carbon estimates in several countries have limited data, especially for seagrass meadows compared to mangrove ecosystems, although the highest reported carbon stocks were in Indonesia and the Philippines with 4,515 and 707 Tg within mangrove forest and 60.9 and 63.3 Tg within seagrass meadows, respectively; (2) there is a high difference in the quantity and quality of data between mangrove and seagrass ecosystems, and the methodologies used for blue carbon estimates are highly variable across countries; and (3) most studies on blue carbon stocks are spatially biased towards more familiar study areas of individual countries, than several lesser-known suspected blue carbon hotspots. In sum, our review demonstrates the paucity and variability in current research in the region, and highlights research frontiers that should be addressed by future research before the robust implementation of these ecosystems into national climate strategies.


Assuntos
Carbono , Ecossistema , Sudeste Asiático , Áreas Alagadas , Indonésia , Sequestro de Carbono
5.
Biofactors ; 49(5): 1061-1073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37219063

RESUMO

The marsupial Monito del monte (Dromiciops gliroides) utilizes both daily and seasonal bouts of torpor to preserve energy and prolong survival during periods of cold and unpredictable food availability. Torpor involves changes in cellular metabolism, including specific changes to gene expression that is coordinated in part, by the posttranscriptional gene silencing activity of microRNAs (miRNA). Previously, differential miRNA expression has been identified in D. gliroides liver and skeletal muscle; however, miRNAs in the heart of Monito del monte remained unstudied. In this study, the expression of 82 miRNAs was assessed in the hearts of active and torpid D. gliroides, finding that 14 were significantly differentially expressed during torpor. These 14 miRNAs were then used in bioinformatic analyses to identify Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were predicted to be most affected by these differentially expressed miRNAs. Overexpressed miRNAs were predicted to primarily regulate glycosaminoglycan biosynthesis, along with various signaling pathways such as Phosphoinositide-3-kinase/protein kinase B and transforming growth factor-ß. Similarly, signaling pathways including phosphatidylinositol and Hippo were predicted to be regulated by the underexpression of miRNAs during torpor. Together, these results suggest potential molecular adaptations that protect against irreversible tissue damage and enable continued cardiac and vascular function despite hypothermia and limited organ perfusion during torpor.


Assuntos
Hibernação , Marsupiais , MicroRNAs , Torpor , Animais , Hibernação/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Marsupiais/genética , Marsupiais/metabolismo , Fígado
6.
Aquat Toxicol ; 256: 106413, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36801178

RESUMO

Ocean acidification (OA) has important effects on the intrinsic phenotypic characteristics of many marine organisms. Concomitantly, OA can alter the extended phenotypes of these organisms by perturbing the structure and function of their associated microbiomes. It is unclear, however, the extent to which interactions between these levels of phenotypic change can modulate the capacity for resilience to OA. Here, we explored this theoretical framework assessing the influence of OA on intrinsic (immunological responses and energy reserve) and extrinsic (gut microbiome) phenotypic characteristics and the survival of important calcifiers, the edible oysters Crassostrea angulata and C. hongkongensis. After one-month exposure to experimental OA (pH 7.4) and control (pH 8.0) conditions, we found species-specific responses characterised by elevated stress (hemocyte apoptosis) and decreased survival in the coastal species (C. angulata) compared with the estuarine species (C. hongkongensis). Phagocytosis of hemocytes was not affected by OA but in vitro bacterial clearance capability decreased in both species. Gut microbial diversity decreased in C. angulata but not in C. hongkongensis. Overall, C. hongkongensis was capable of maintaining the homeostasis of the immune system and energy supply under OA. In contrast, C. angulata's immune function was suppressed, and the energy reserve was imbalanced, which might be attributed to the declined microbial diversity and the functional loss of essential bacteria in the guts. This study highlights a species-specific response to OA determined by genetic background and local adaptation, shedding light on the understanding of host-microbiota-environment interactions in future coastal acidification.


Assuntos
Crassostrea , Microbioma Gastrointestinal , Poluentes Químicos da Água , Animais , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Bactérias , Dióxido de Carbono
7.
Ecol Lett ; 26(2): 278-290, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36468222

RESUMO

Assessing the heat tolerance (CTmax) of organisms is central to understand the impact of climate change on biodiversity. While both environment and evolutionary history affect CTmax, it remains unclear how these factors and their interplay influence ecological interactions, communities and ecosystems under climate change. We collected and reared caterpillars and parasitoids from canopy and ground layers in different seasons in a tropical rainforest. We tested the CTmax and Thermal Safety Margins (TSM) of these food webs with implications for how species interactions could shift under climate change. We identified strong influence of phylogeny in herbivore-parasitoid community heat tolerance. The TSM of all insects were narrower in the canopy and parasitoids had lower heat tolerance compared to their hosts. Our CTmax-based simulation showed higher herbivore-parasitoid food web instability under climate change than previously assumed, highlighting the vulnerability of parasitoids and related herbivore control in tropical rainforests, particularly in the forest canopy.


Assuntos
Ecossistema , Termotolerância , Animais , Herbivoria , Mudança Climática , Insetos , Clima Tropical
8.
Nat Commun ; 13(1): 3010, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637228

RESUMO

Animals display a fascinating diversity of body plans. Correspondingly, genomic analyses have revealed dynamic evolution of gene gains and losses among animal lineages. Here we sequence six new myriapod genomes (three millipedes, three centipedes) at key phylogenetic positions within this major but understudied arthropod lineage. We combine these with existing genomic resources to conduct a comparative analysis across all available myriapod genomes. We find that millipedes generally have considerably smaller genomes than centipedes, with the repeatome being a major contributor to genome size, driven by independent large gains of transposons in three centipede species. In contrast to millipedes, centipedes gained a large number of gene families after the subphyla diverged, with gains contributing to sensory and locomotory adaptations that facilitated their ecological shift to predation. We identify distinct horizontal gene transfer (HGT) events from bacteria to millipedes and centipedes, with no identifiable HGTs shared among all myriapods. Loss of juvenile hormone O-methyltransferase, a key enzyme in catalysing sesquiterpenoid hormone production in arthropods, was also revealed in all millipede lineages. Our findings suggest that the rapid evolution of distinct genomic pathways in centipede and millipede lineages following their divergence from the myriapod ancestor, was shaped by differing ecological pressures.


Assuntos
Artrópodes , Transferência Genética Horizontal , Animais , Artrópodes/genética , Quilópodes , Genoma/genética , Filogenia
9.
Cell ; 185(10): 1646-1660.e18, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35447073

RESUMO

Incomplete lineage sorting (ILS) makes ancestral genetic polymorphisms persist during rapid speciation events, inducing incongruences between gene trees and species trees. ILS has complicated phylogenetic inference in many lineages, including hominids. However, we lack empirical evidence that ILS leads to incongruent phenotypic variation. Here, we performed phylogenomic analyses to show that the South American monito del monte is the sister lineage of all Australian marsupials, although over 31% of its genome is closer to the Diprotodontia than to other Australian groups due to ILS during ancient radiation. Pervasive conflicting phylogenetic signals across the whole genome are consistent with some of the morphological variation among extant marsupials. We detected hundreds of genes that experienced stochastic fixation during ILS, encoding the same amino acids in non-sister species. Using functional experiments, we confirm how ILS may have directly contributed to hemiplasy in morphological traits that were established during rapid marsupial speciation ca. 60 mya.


Assuntos
Marsupiais , Animais , Austrália , Evolução Molecular , Especiação Genética , Genoma , Marsupiais/genética , Fenótipo , Filogenia
10.
Evolution ; 75(2): 529-541, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389749

RESUMO

Mate choice for genetic benefits remains controversial, largely because few studies have estimated the relative contributions of additive and non-additive sources of genetic variation to offspring fitness. Moreover, there remains a deficit of these estimates for species where female-mate preferences have been quantified in the wild, especially species characterized by monandry or monogamy. Here, we use artificial fertilization techniques combined with a cross-classified breeding design to simultaneously test for "good genes" and "compatible genes" benefits of mate choice in the monandrous red backed toadlet (Pseudophryne coriacea). In addition, we used a genomic approach to estimate effects of parental-genetic relatedness (assessed using 27, 768 single nucleotide polymorphisms) on offspring fitness. Our results revealed no significant additive genetic effects (sire effects), but highly significant non-additive genetic effects (sire × dam interaction effects), on fertilization success, survival during embryonic development, and hatching success. We also found significant associations between parental genetic similarity and offspring survival (whereby survival was higher when parents were more related), and significant positive relationships between fertilization success and embryo survival through to hatching. These results indicate that offspring viability is significantly influenced by the genetic compatibility of parental genotypes, that more related parents are more genetically compatible, and that gametes with greater compatibility at fertilization produce more viable offspring. More broadly, our findings provide new quantitative genetic evidence that genetic incompatibility underpins female mate preferences. Continued quantitative genetic assessment of the relative importance of good genes versus compatible genes is needed to ascertain the general importance of genetic benefits as a driver of female mate choice.


Assuntos
Anuros/genética , Fertilização/genética , Aptidão Genética , Preferência de Acasalamento Animal , Animais , Tamanho Corporal , Desenvolvimento Embrionário , Feminino , Masculino
11.
Sci Rep ; 10(1): 3186, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081970

RESUMO

Local and global changes associated with anthropogenic activities are impacting marine and terrestrial ecosystems. Macroalgae, especially habitat-forming species like kelp, play critical roles in temperate coastal ecosystems. However, their abundance and distribution patterns have been negatively affected by warming in many regions around the globe. Along with global change, coastal ecosystems are also impacted by local drivers such as eutrophication. The interaction between global and local drivers might modulate kelp responses to environmental change. This study examines the regulatory effect of NO3- on the thermal plasticity of the giant kelp Macrocystis pyrifera. To do this, thermal performance curves (TPCs) of key temperature-dependant traits-growth, photosynthesis, NO3- assimilation and chlorophyll a fluorescence-were examined under nitrate replete and deplete conditions in a short-term incubation. We found that thermal plasticity was modulated by NO3- but different thermal responses were observed among traits. Our study reveals that nitrogen, a local driver, modulates kelp responses to high seawater temperatures, ameliorating the negative impacts on physiological performance (i.e. growth and photosynthesis). However, this effect might be species-specific and vary among biogeographic regions - thus, further work is needed to determine the generality of our findings to other key temperate macroalgae that are experiencing temperatures close to their thermal tolerance due to climate change.

12.
Evolution ; 73(9): 1972-1985, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31411350

RESUMO

Sequential polyandry may evolve as an insurance mechanism to reduce the risk of females choosing mates who are genetically inferior (intrinsic male quality hypothesis) or genetically incompatible (genetic incompatibility hypothesis). The prevalence of such indirect benefits remains controversial, however, because studies estimating the contributions of additive and nonadditive sources of genetic variation to offspring fitness have been limited to a small number of taxonomic groups. Here, we used artificial fertilization techniques combined with a crossclassified breeding design (North Carolina Type II) to simultaneously test the "good genes hypothesis" and the "genetic incompatibility hypothesis" in the brown toadlet (Pseudophryne bibronii); a terrestrial-breeding species with extreme sequential polyandry. Our results revealed no significant additive or nonadditive genetic effects on fertilization success. Moreover, they revealed no significant additive genetic effects, but highly significant nonadditive genetic effects (sire by dam interaction effects), on hatching success and larval survival to initial and complete metamorphosis. Taken together, these results indicate that offspring viability is significantly influenced by the combination of parental genotypes, and that negative interactions between parental genetic elements manifest during embryonic and larval development. More broadly, our findings provide quantitative genetic evidence that insurance against genetic incompatibility favors the evolution and maintenance of sequential polyandry.


Assuntos
Anuros/genética , Anuros/fisiologia , Fertilização , Comportamento Sexual Animal , Animais , Austrália , Cruzamento , Cruzamentos Genéticos , Feminino , Variação Genética , Genótipo , Masculino , Reprodução , Estações do Ano
13.
Philos Trans R Soc Lond B Biol Sci ; 374(1768): 20180186, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30966966

RESUMO

Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for understanding population responses to climate change that incorporates plasticity and adaptation to environmental change in marine ecosystems. We use this conceptual model to help inform where within the geographical range each mechanism will probably operate most strongly and explore the supporting evidence in species. We then expand the discussion from a single-species perspective to community-level responses and use the conceptual model to visualize and guide research into the important yet poorly understood processes of plasticity and adaptation. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.


Assuntos
Adaptação Fisiológica , Organismos Aquáticos/fisiologia , Ecossistema , Geografia , Modelos Biológicos , Oceanos e Mares
14.
Mol Ecol ; 27(22): 4489-4500, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30240506

RESUMO

The small South American marsupial, Dromiciops gliroides, known as the missing link between the American and the Australian marsupials, is one of the few South American mammals known to hibernate. Expressing both daily torpor and seasonal hibernation, this species may provide crucial information about the mechanisms and the evolutionary origins of marsupial hibernation. Here, we compared torpid and active individuals, applying high-throughput sequencing technologies (RNA-seq) to profile gene expression in three D. gliroides tissues and determine whether hibernation induces tissue-specific differential gene expression. We found 566 transcripts that were significantly up-regulated during hibernation (369 in brain, 147 in liver and 50 in skeletal muscle) and 339 that were down-regulated (225 in brain, 79 in liver and 35 in muscle). The proteins encoded by these differentially expressed genes orchestrate multiple metabolic changes during hibernation, such as inhibition of angiogenesis, prevention of muscle disuse atrophy, fuel switch from carbohydrate to lipid metabolism, protection against reactive oxygen species and repair of damaged DNA. According to the global enrichment analysis, brain cells seem to differentially regulate a complex array of biological functions (e.g., cold sensitivity, circadian perception, stress response), whereas liver and muscle cells prioritize fuel switch and heat production for rewarming. Interestingly, transcripts of thioredoxin-interacting protein (TXNIP), a potent antioxidant, were significantly over-expressed during torpor in all three tissues. These results suggest that marsupial hibernation is a controlled process where selected metabolic pathways show adaptive modulation that can help to maintain homeostasis and enhance cytoprotection in the hypometabolic state.


Assuntos
Hibernação/genética , Marsupiais/genética , Transcriptoma , Animais , Encéfalo/metabolismo , Chile , Regulação da Expressão Gênica , Fígado/metabolismo , Marsupiais/metabolismo , Células Musculares/metabolismo , Termogênese , Torpor/genética
15.
Ecol Evol ; 8(9): 4619-4630, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29760902

RESUMO

There have been over 25 independent unicellular to multicellular evolutionary transitions, which have been transformational in the complexity of life. All of these transitions likely occurred in communities numerically dominated by unicellular organisms, mostly bacteria. Hence, it is reasonable to expect that bacteria were involved in generating the ecological conditions that promoted the stability and proliferation of the first multicellular forms as protective units. In this study, we addressed this problem by analyzing the occurrence of multicellularity in an experimental phylogeny of yeasts (Sacharomyces cerevisiae) a model organism that is unicellular but can generate multicellular clusters under some conditions. We exposed a single ancestral population to periodic divergences, coevolving with a cocktail of environmental bacteria that were inoculated to the environment of the ancestor, and compared to a control (no bacteria). We quantified culturable microorganisms to the level of genera, finding up to 20 taxa (all bacteria) that competed with the yeasts during diversification. After 600 generations of coevolution, the yeasts produced two types of multicellular clusters: clonal and aggregative. Whereas clonal clusters were present in both treatments, aggregative clusters were only present under the bacteria treatment and showed significant phylogenetic signal. However, clonal clusters showed different properties if bacteria were present as follows: They were more abundant and significantly smaller than in the control. These results indicate that bacteria are important modulators of the occurrence of multicellularity, providing support to the idea that they generated the ecological conditions-promoting multicellularity.

16.
Artigo em Inglês | MEDLINE | ID: mdl-29247844

RESUMO

Mammalian hibernation is characterized by extensive adjustments to metabolism that typically include suppression of carbohydrate catabolism and a switch to triglycerides as the primary fuel during torpor. A crucial locus of control in this process is the pyruvate dehydrogenase complex that gates carbohydrate entry into the tricarboxylic acid cycle. Within the complex, the E1 enzyme pyruvate dehydrogenase (PDH) is the main regulatory site and is subject to inhibitory phosphorylation at three serine residues (S232, S293, S300). To determine if marsupial hibernators show a comparable focus on PDH to regulate fuel metabolism, the current study explored PDH control by site-specific phosphorylation in the South American marsupial, monito del monte (Dromiciops gliroides). Luminex multiplex technology was used to analyze PDH responses in six tissues comparing control and hibernating (4days continuous torpor) animals. Total PDH content did not change significantly during hibernation in any tissue but phospho-PDH content increased in all. Heart PDH showed increased phosphorylation at all three sites by 8.1-, 10.6- and 2.1-fold for S232, S293 and S300, respectively. Liver also showed elevated p-S300 (2.5-fold) and p-S293 (4.7-fold) content. Phosphorylation of S232 and S293 increased significantly in brain and lung but only S232 phosphorylation increased in kidney and skeletal muscle. The results show that PDH suppression via enzyme phosphorylation during torpor is a conserved mechanism for inhibiting carbohydrate catabolism in both marsupial and eutherian mammals, an action that would also promote the switch to fatty acid oxidation instead.


Assuntos
Adaptação Fisiológica/fisiologia , Metabolismo dos Carboidratos/fisiologia , Ciclo do Ácido Cítrico/fisiologia , Hibernação/fisiologia , Marsupiais/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Triglicerídeos/metabolismo , Animais , Especificidade de Órgãos/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-29247845

RESUMO

Hibernation is a period of torpor and heterothermy that is typically associated with a strong reduction in metabolic rate, global suppression of transcription and translation, and upregulation of various genes/proteins that are central to the cellular stress response such as protein kinases, antioxidants, and heat shock proteins. The current study examined cell signaling cascades in hibernating monito del monte, Dromiciops gliroides, a South American marsupial of the Order Microbiotheria. Responses to hibernation by members of the mitogen-activated protein kinase (MAPK) pathways, and their roles in coordinating hibernator metabolism were examined in liver, kidney, heart and brain of control and versus hibernating (4days continuous torpor) D. gliroides. The targets evaluated included key protein kinases in their activated phosphorylated forms (p-ERK/MAPK 1/2, p-MEK1, p-MSK1, p-p38, p-JNK) and related target proteins (p-CREB 2, p-ATF2, p-c-Jun and p-p53). Liver exhibited a strong coordinated response by MAPK members to hibernation with significant increases in protein phosphorylation levels of p-MEK1, p-ERK/MAPK1/2, p-MSK1, p-JNK and target proteins c-Jun, and p-ATF2, all combining to signify a strong activation of MAPK signaling during hibernation. Kidney also showed activation of MAPK cascades with significant increases in p-MEK1, p-ERK/MAPK1/2, p-p38, and p-c-Jun levels in hibernating animals. By contrast, responses by heart and brain indicated reduced MAPK pathway function during torpor with reduced phosphorylation of targets including p-ERK/MAPK 1/2 in both tissues as well as lower p-p38 and p-JNK content in heart. Overall, the data indicate a vital role for MAPK signaling in regulating the cell stress response during marsupial hibernation.


Assuntos
Hibernação/fisiologia , Rim/enzimologia , Fígado/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Marsupiais/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Animais
18.
Artigo em Inglês | MEDLINE | ID: mdl-29247846

RESUMO

When faced with harsh environmental conditions, the South American marsupial, monito del monte (Dromiciops gliroides), reduces its body temperature and uses either daily torpor or multiday hibernation to survive. This study used ELISA and multiplex assays to characterize the responses to hibernation by three regulatory components of protein translation machinery [p-eIF2α(S51), p-eIF4E(S209), p-4EBP(Thr37/46)] and eight targets involved in upstream signaling control of translation [p-IGF-1R(Tyr1135/1136), PTEN(S380), p-Akt(S473), p-GSK-3α(S21), p-GSK-3ß(S9), p-TSC2(S939), p-mTOR(S2448), and p70S6K(T412)]. Liver, brain and kidney were analyzed comparing control and hibernation (4days continuous torpor) conditions. In the liver, increased phosphorylation of IGF-1R, Akt, GSK-3ß, TSC2, mTOR, eIF2α, and 4EBP (1.60-1.98 fold compared to control) occurred during torpor suggesting that the regulatory phosphorylation cascade and protein synthesis remained active during torpor. However, responses by brain and kidney differed; torpor resulted in increased phosphorylation of GSK-3ß (2.15-4.17 fold) and TSC2 (2.03-3.65 fold), but phosphorylated Akt decreased (to 34-62% of control levels). Torpor also led to an increase in phosphorylated eIF2α (1.4 fold) content in the brain. These patterns of differential protein phosphorylation in brain and kidney were indicative of suppression of protein translation but also could suggest an increase in antioxidant and anti-apoptotic signaling during torpor. Previous studies of liver metabolism in hibernating eutherian mammals have shown that Akt kinase and its downstream signaling components play roles in facilitating hypometabolism by suppressing energy expensive anabolic processes during torpor. However, the results in this study reveal differences between eutherian and marsupial hibernators, suggesting alternative actions of liver Akt during torpor.


Assuntos
Adaptação Fisiológica/fisiologia , Hibernação/fisiologia , Fígado/enzimologia , Marsupiais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Biossíntese de Proteínas
19.
Artigo em Inglês | MEDLINE | ID: mdl-29248591

RESUMO

The South American marsupial, monito del monte (Dromiciops gliroides) uses both daily torpor and multi-day hibernation to survive in its southern Chile native environment. The present study leverages multiplex technology to assess the contributions of key stress-inducible cell cycle regulators and heat shock proteins to hibernation in liver, heart, and brain of monito del monte in a comparison of control versus 4day hibernating conditions. The data indicate that MDM2, a stress-responsive ubiquitin ligase, plays a crucial role in marsupial hibernation since all three tissues showed statistically significant increases in MDM2 levels during torpor (1.6-1.8 fold). MDM2 may have a cytoprotective action to deal with ischemia/reperfusion stress and is also involved in a nutrient sensing pathway where it could help regulate the metabolic switch to fatty acid oxidation during torpor. Elevated levels of stress-sensitive cell cycle regulators including ATR (2.32-3.91 fold), and the phosphorylated forms of p-Chk1 (Ser345) (1.92 fold), p-Chk2 (Thr68) (2.20 fold) and p21 (1.64 fold) were observed in heart and liver during hibernation suggesting that the cell cycle is likely suppressed to conserve energy while animals are in torpor. Upregulation of heat shock proteins also occurred as a cytoprotective strategy with increased levels of hsp27 (2.00 fold) and hsp60 (1.72-2.76 fold) during hibernation. The results suggest that cell cycle control and selective chaperone action are significant components of hibernation in D. gliroides and reveal common molecular responses to those seen in eutherian hibernators.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Hibernação/fisiologia , Marsupiais/metabolismo , Estresse Fisiológico/fisiologia , Animais , Especificidade de Órgãos/fisiologia
20.
J Therm Biol ; 68(Pt A): 14-20, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28689716

RESUMO

Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms.


Assuntos
Adaptação Fisiológica/fisiologia , Braquiúros/fisiologia , Temperatura , Distribuição Animal , Animais , Mudança Climática , Metabolismo Energético/fisiologia , Meio Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA