Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(25): 9520-9530, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37307147

RESUMO

Tetraspanins, including CD9, CD63, and CD81, are transmembrane biomarkers that play a crucial role in regulating cancer cell proliferation, invasion, and metastasis, as well as plasma membrane dynamics and protein trafficking. In this study, we developed simple, fast, and sensitive immunosensors to determine the concentration of extracellular vesicles (EVs) isolated from human lung cancer cells using tetraspanins as biomarkers. We employed surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation (QCM-D) as detectors. The monoclonal antibodies targeting CD9, CD63, and CD81 were oriented vertically in the receptor layer using either a protein A sensor chip (SPR) or a cysteamine layer that modified the gold crystal (QCM-D) without the use of amplifiers. The SPR studies demonstrated that the interaction of EVs with antibodies could be described by the two-state reaction model. Furthermore, the EVs' affinity to monoclonal antibodies against tetraspanins decreased in the following order: CD9, CD63, and CD81, as confirmed by the QCM-D studies. The results indicated that the developed immunosensors were characterized by high stability, a wide analytical range from 6.1 × 104 particles·mL-1 to 6.1 × 107 particles·mL-1, and a low detection limit (0.6-1.8) × 104 particles·mL-1. A very good agreement between the results obtained using the SPR and QCM-D detectors and nanoparticle tracking analysis demonstrated that the developed immunosensors could be successfully applied to clinical samples.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/métodos , Técnicas de Microbalança de Cristal de Quartzo , Imunoensaio , Tetraspaninas , Vesículas Extracelulares/química , Biomarcadores , Tetraspanina 28 , Tetraspanina 30/análise , Tetraspanina 29/análise
2.
Sci Rep ; 13(1): 7316, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147448

RESUMO

Despite significant progress in cancer therapy, cancer is still the second cause of mortality in the world. The necessity to make quick therapeutic decisions forces the development of procedures allowing to obtain a reliable result in a quick and unambiguous manner. Currently, detecting predictive mutations, including BRCA1, is the basis for effectively treating advanced breast cancer. Here, we present new insight on gene mutation detection. We propose a cheap BRCA1 mutation detection tests based on the surface plasmon resonance (SPR) or quartz crystal microbalance with energy dissipation (QCM-D) response changes recorded during a hybridization process of an oligonucleotide molecular probe with DNA fragments, with and without the BRCA1 mutation. The changes in the morphology of the formed DNA layer caused by the presence of the mutation were confirmed by atomic force microscopy. The unique property of the developed SPR and QCM tests is really short time of analysis: ca. 6 min for SPR and ca. 25 min for QCM. The proposed tests have been verified on 22 different DNA extracted from blood leukocytes collected from cancer patients: 17 samples from patients with various BRCA1 gene mutation variants including deletion, insertion and missense single-nucleotide and 5 samples from patients without any BRCA1 mutation. Our test is a response to the need of medical diagnostics for a quick, unambiguous test to identify mutations of the BRCA1 gene, including missense single-nucleotide (SNPs).


Assuntos
Neoplasias da Mama , Genes BRCA1 , Humanos , Feminino , Proteína BRCA1/genética , Mutação , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , DNA , Nucleotídeos
3.
J Org Chem ; 88(7): 4199-4208, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36916291

RESUMO

This paper reports the synthesis and characterization of novel monoferrocenylsumanenes obtained by means of the Sonogashira cross-coupling or click chemistry reaction as well as their application in cesium cation electrochemical sensors. A new synthetic protocol based on Sonogashira cross-coupling was developed for the synthesis of monoferrocenylsumanene or ethynylsumanene. The click chemistry reaction was introduced to the sumanene chemistry through the synthesis of 1,2,3-triazole containing monoferrocenylsumanene. The designed synthetic methods for the modification of sumanene at the aromatic position proved to be efficient and proceeded under mild conditions. The synthesized sumanene derivatives were characterized by detailed spectroscopic analyses of the synthesized sumanene derivatives. The supramolecular interactions between cesium cations and the synthesized monoferrocenylsumanenes were spectroscopically and electrochemically investigated. Furthermore, the design of the highly selective and sensitive cesium cation fluorescence and electrochemical sensors comprising the synthesized monoferrocenylsumanenes as receptor compounds was analyzed. The tested cesium cation electrochemical sensors showed excellent limit of detection values in the range of 6.0-9.0 nM. In addition, the interactions between the synthesized monoferrocenylsumanenes and cesium cations were highly selective, which was confirmed by emission spectroscopy, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and cyclic voltammetry.

4.
Dalton Trans ; 52(10): 3137-3147, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36789905

RESUMO

Carbon-carbon bond formation, condensation or click chemistry reactions were used to synthesize novel bowl-shaped sumanene-ferrocene conjugates, along with the extended π-electron framework in good yields. For the first time, the present study uses sumanene derivatives tris-substituted at the benzylic positions as the materials to begin the study on the click chemistry or the metal-catalyzed coupling reactions, Suzuki-Miyaura or Sonogashira couplings. The synthesized conjugates exhibited the property of selective recognizing cesium cations. As a result, this led to the development of highly sensitive and selective fluorescent or electrochemical sensors dedicated to the recognition of cesium cations (Cs+) in water. We successfully designed the Cs+ electrochemical sensors, which exhibited an acceptable limit of detection (LOD) values at 0.05-0.38 µM. Spectrofluorimetry, voltammetry, and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to perform the selectivity studies. The results revealed that the designed sensors are highly Cs+-selective. This work significantly contributes to the design of new methods of sumanene modification. It also provides further information on the electrochemical properties and innovative applications of metallocene-tethered sumanene derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA