Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(6): 3449-3463, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38739908

RESUMO

Using supramolecular self-assembled nanocomposite materials made from protein and polysaccharide components is becoming more popular because of their unique properties, such as biodegradability, hierarchical structures, and tunable multifunctionality. However, the fabrication of these materials in a reproducible way remains a challenge. This study presents a new evaporation-induced self-assembly method producing layered hydrogel membranes (LHMs) using tropocollagen grafted by partially deacetylated chitin nanocrystals (CO-g-ChNCs). ChNCs help stabilize tropocollagen's helical conformation and fibrillar structure by forming a hierarchical microstructure through chemical and physical interactions. The LHMs show improved mechanical properties, cytocompatibility, and the ability to control drug release using octenidine dihydrochloride (OCT) as a drug model. Because of the high synergetic performance between CO and ChNCs, the modulus, strength, and toughness increased significantly compared to native CO. The biocompatibility of LHM was tested using the normal human dermal fibroblast (NHDF) and the human osteosarcoma cell line (Saos-2). Cytocompatibility and cell adhesion improved with the introduction of ChNCs. The extracted ChNCs are used as a reinforcing nanofiller to enhance the performance properties of tropocollagen hydrogel membranes and provide new insights into the design of novel LHMs that could be used for various medical applications, such as control of drug release in the skin and bone tissue regeneration.


Assuntos
Hidrogéis , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Nanopartículas/química , Quitina/química , Linhagem Celular Tumoral , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Membranas Artificiais , Nanocompostos/química , Adesão Celular/efeitos dos fármacos
2.
Int J Biol Macromol ; 248: 126654, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659482

RESUMO

Recent complications on the use of polypropylene meshes for hernia repair has led to the development of meshes or films, which were based on resorbable polymers such as polycaprolactone (PCL), polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA). These materials are able to create suitable bioactive environment for the growth and development of cells. In this research, we mainly focused on the relations among structure, mechanical performance and biocompatiblity of PCL/PLA and PCL/PLGA and blends prepared by solution casting. The films were characterized regarding the chemical structure, morphology, physicochemical properties, cytotoxicity, biocompatibility and cell growth. All the films showed high tensile strength ranging from 9.5 to 11.8 MPa. SAXS showed that the lamellar stack structure typical for PCL was present even in the blend films while the morphological parameters of the stacks varied slightly with the content of PLGA or PLA in the blends. WAXS indicated preferential orientation of crystallites (and thus, also the lamellar stacks) in the blend films. In vitro studies revealed that PCL/PLGA films displayed better cell adhesion, spreading and proliferation than PCL/PLA and PCL films. Further the effect of blending on the degradation was investigated, to understand the significant variable within the process that could provide further control of cell adhesion. The results showed that the investigated blend films are promising materials for biomedical applications.


Assuntos
Implantes Absorvíveis , Glicóis , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espalhamento a Baixo Ângulo , Difração de Raios X , Poliésteres
3.
Nanoscale Adv ; 5(17): 4563-4570, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37638154

RESUMO

The magnetic properties of nanoscale magnets are greatly influenced by surface anisotropy. So far, its quantification is based on the examination of the blocking temperature shift within a series of nanoparticles of varying sizes. In this scenario, the surface anisotropy is assumed to be a particle size-independent quantity. However, there is no solid experimental proof to support this simplified picture. On the contrary, our work unravels the size-dependent magnetic morphology and surface anisotropy in highly uniform magnetic nanoparticles using small-angle polarized neutron scattering. We observed that the surface anisotropy constant does not depend on the nanoparticle's size in the range of 3-9 nm. Furthermore, our results demonstrate that the surface spins are less prone to polarization with increasing nanoparticle size. Our study thus proves the size dependence of the surface spin disorder and the surface anisotropy constant in fine nanomagnets. These findings open new routes in materials based on a controlled surface spin disorder, which is essential for future applications of nanomagnets in biomedicine and magnonics.

4.
Materials (Basel) ; 16(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36902884

RESUMO

Morphology, macro-, and micromechanical properties of novel poly(urethane-urea)/silica nanocomposites were analyzed by electron microscopy, dynamic mechanical thermal analysis, and microindentation. The studied nanocomposites were based on a poly(urethane-urea) (PUU) matrix filled by nanosilica, and were prepared from waterborne dispersions of PUU (latex) and SiO2. The loading of nano-SiO2 was varied between 0 (neat matrix) and 40 wt% in the dry nanocomposite. The prepared materials were all formally in the rubbery state at room temperature, but they displayed complex elastoviscoplastic behavior, spanning from stiffer elastomeric type to semi-glassy. Because of the employed rigid and highly uniform spherical nanofiller, the materials are of great interest for model microindentation studies. Additionally, because of the polycarbonate-type elastic chains of the PUU matrix, hydrogen bonding in the studied nanocomposites was expected to be rich and diverse, ranging from very strong to weak. In micro- and macromechanical tests, all the elasticity-related properties correlated very strongly. The relations among the properties that related to energy dissipation were complex, and were highly affected by the existence of hydrogen bonding of broadly varied strength, by the distribution patterns of the fine nanofiller, as well as by the eventual locally endured larger deformations during the tests, and the tendency of the materials to cold flow.

5.
Polymers (Basel) ; 15(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36771869

RESUMO

This contribution lays the foundation for the European database of explanted UHMWPE liners from total joint replacements. Three EU countries (Czech Republic, Italy and Spain) have joined their datasets containing anonymized patient data (such as age and BMI), manufacturer data (such as information on UHMWPE crosslinking, thermal treatment and sterilization), orthopedic evaluation (such as total duration of the implant in vivo and reasons for its revision) and material characterization (such as oxidative degradation and micromechanical properties). The joined database contains more than 500 entries, exhibiting gradual growth, and it is beginning to show interesting trends, which are discussed in our contribution, including (i) strong correlations between UHMWPE oxidative degradation, degree of crystallinity and microhardness; (ii) statistically significant differences between UHMWPE liners with different types of sterilization; (iii) realistic correlations between the extent of oxidative degradation and the observed reasons for total joint replacement failures. Our final objective and task for the future is to continuously expand the database, involving researchers from other European countries, in order to create a robust tool that will contribute to the better understanding of structure-properties-performance relationships in the field of arthroplasty implants.

6.
Materials (Basel) ; 16(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36676572

RESUMO

We compared the results of various microscale indentation creep (microcreep) measurements with macroscale tensile creep (macrocreep) measurements of three common polymers: high-density polyethylene (PE), polypropylene (PP), and polystyrene (PS). The main objective was to verify if the short-term microcreep experiments could predict long-term macrocreep behavior of the selected polymers, whose properties ranged from very soft and ductile (PE) to very hard and brittle (PS). The second objective was to compare several creep predictive schemes: the empirical power law model (PL) and several types of phenomenological elasto-visco-plastic models (EVP). In order to facilitate this task, we developed a universal program package named MCREEP, which fits PL and EVP models to both tensile and indentation creep data. All experimental results and theoretical predictions documented that: (i) regardless of the creep experiment type, both micro- and macrocreep resistance increased in the following order: PE < PP < PS, (ii) the short-term microcreep experiments could be used to predict qualitatively the long-term macrocreep behavior, and (iii) the simple empirical power law model yielded better predictions of long-term creep behavior than the more sophisticated elasto-visco-plastic models.

7.
Anal Chim Acta ; 1227: 340310, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36089320

RESUMO

In this article we describe construction of a bioreceptive interface for detection of a breast cancer biomarker carbohydrate antigen CA15-3. The conductive interface was patterned by a 2D nanomaterial MXene, to which a mixed layer containing sulfobetaine and carboxybetaine was electrochemically grafted through a diazonium moiety. Such a modified interface was then applied for covalent immobilisation of anti-CA15-3 antibody as a bioreceptive probe for detection of a breast cancer biomarker. Two different strategies were applied for final construction of an immunosensor i.e. an interface finally blocked by bovine serum albumin or an immunosensor without such modification. Finally, electrochemical reading was accomplished using a soluble redox probe Ru(NH3)63+ ion for detection of CA15-3 in a clinically relevant range up to 50 U mL-1. The results indicate that immunosensor based on non-blocked interface can be applied for biosensing using two modes of action: 1. differential pulse voltammetry (a plot of a peak current vs. analyte concentration) and 2. an electrochemical impedance spectroscopy (a plot of a charge transfer resistance vs. analyte concentration). The electrode blocked by bovine serum albumin (BSA) can be used by additional 3. mode of action: through detection of changes in the potential (a plot Epvs. c). Additionally, we reveal and explain that Ru(NH3)63+ is redox probe, which can be applied as interfacial molecular nanoscale ruler to distinguish negatively charged protein molecules present in the close proximity (≤ 6 nm) of the electrode (in our case adsorbed BSA molecules) from the negatively charged protein molecules at a larger distance (>12 nm) from the electrode (i.e. CA15-3 analyte).


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Imunoensaio/métodos , Mucina-1 , Oxirredução , Compostos de Rutênio , Soroalbumina Bovina
8.
Phys Chem Chem Phys ; 24(24): 15034-15047, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35695723

RESUMO

Plasmon-catalyzed decarboxylation reactions of Ru(II) bis(2,2'-bipyridine)(4,4'-dicarboxy-bipyridine) denoted as Ru(bpy)2(dcbpy) and Ru(II) tris(4,4'-dicarboxy-bipyridine) denoted as Ru(dcbpy)3 complexes in hydrosol systems with Ag nanoparticles (NPs) conditioned by the presence of Ag(0) adsorption sites on Ag NP surfaces have been revealed by surface-enhanced (resonance) Raman scattering (SERRS and/or SERS) spectral probing and monitoring further supported by factor analysis. Interpretation of the experimental results was based on an identification of specific marker bands of the Ru-dcbpy and of the Ru-bpy units. Furthermore, by a series of specifically targeted SERRS and/or SERS experiments complemented by UV/vis spectral measurements and TEM imaging of deposited Ag NPs, plasmon catalysis by charge carriers, namely hot electrons (e-) and hot holes (h+), has been established as the most probable mechanism of decarboxylation reactions undergone by the carboxylate-chemisorbed Ru-dcbpy units of the complexes. The presence of Ag(0) adsorption sites on Ag NP surfaces as the necessary condition of the reaction progress is in full accord with the charge carrier mechanism of plasmon catalysis. In particular, the neutral Ag(0) sites create the interface required for the transport of hot e- to H+ co-reactants complementing thus the C-C bond breaking and CO2 formation caused by hot h+.

9.
Materials (Basel) ; 15(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35161043

RESUMO

We report a reproducible preparation and characterization of highly homogeneous thermoplastic starch/pol(ε-caprolactone) blends (TPS/PCL) with a minimal thermomechanical degradation and co-continuous morphology. These materials would be suitable for biomedical applications, specifically for the local release of antibiotics (ATB) from the TPS phase. The TPS/PCL blends were prepared in the whole concentration range. In agreement with theoretical predictions based on component viscosities, the co-continuous morphology was found for TPS/PCL blends with a composition of 70/30 wt.%. The minimal thermomechanical degradation of the blends was achieved by an optimization of the processing conditions and by keeping processing temperatures as low as possible, because higher temperatures might damage ATB in the final application. The blends' homogeneity was verified by scanning electron microscopy. The co-continuous morphology was confirmed by submicron-computed tomography. The mechanical performance of the blends was characterized in both microscale (by an instrumented microindentation hardness testing; MHI) and macroscale (by dynamic thermomechanical analysis; DMTA). The elastic moduli of TPS increased ca four times in the TPS/PCL (70/30) blend. The correlations between elastic moduli measured by MHI and DMTA were very strong, which implied that, in the future studies, it would be possible to use just micromechanical testing that does not require large specimens.

10.
Expert Rev Proteomics ; 18(10): 881-910, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34711108

RESUMO

INTRODUCTION: Breast cancer (BCa) is the most common cancer type diagnosed in women and 5th most common cause of deaths among all cancer deaths despite the fact that screening program is at place. This is why novel diagnostics approaches are needed in order to decrease number of BCa cases and disease mortality. AREAS COVERED: In this review paper, we aim to cover some basic aspects regarding cellular metabolism and signalling in BCa behind altered glycosylation. We also discuss novel exciting discoveries regarding glycan-based analysis, which can provide useful information for better understanding of the disease. The final part deals with clinical usefulness of glycan-based biomarkers and the clinical performance of such biomarkers is compared to already approved BCa biomarkers and diagnostic tools based on imaging. EXPERT OPINION: Recent discoveries suggest that glycan-based biomarkers offer high accuracy for possible BCa diagnostics in blood, but also for better monitoring and management of BCa patients. The review article was written using Web of Science search engine to include articles published between 2019 and 2021.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Biomarcadores , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Feminino , Glicômica , Glicosilação , Humanos , Polissacarídeos
11.
J Mech Behav Biomed Mater ; 120: 104205, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058599

RESUMO

We characterized a set of eleven clinically relevant formulations of UHMWPE for total joint replacements. Although their molecular and supermolecular structure were quite similar as evidenced by IR, DSC and SAXS measurements, there were slight differences in their crystallinity (DSC crystallinity ranging from 52 to 61%), which were connected with processing conditions, such as the total radiation dose, thermal treatment and/or addition of biocompatible stabilizers. Mechanical properties were assessed at all length scales, using macroscale compression testing, non-instrumented and instrumented microindentation hardness testing (at loading forces ~500 mN), and nanoindentation hardness testing measured at both higher and lower loading (~4 mN and ~0.6 mN, respectively). In agreement with theoretical predictions, we found linear correlations between UHMWPE crystallinity and its stiffness-related properties (elastic moduli, yield stress, and hardness) at all length scales (macro-, micro- and nanoscale). Detailed statistical evaluation of our dataset showed that the accuracy and precision of the applied methods decreased in the following order: non-instrumented microindentation ≥ instrumented microindentation ≥ macromechanical properties ≥ nanoindentation measured at higher loading forces â‰« nanoindentation measured at lower loading forces. The results confirm that microindentation and nanoindentation at sufficiently high loading forces are reliable methods, suitable for UHMWPE characterization.


Assuntos
Polietilenos , Teste de Materiais , Espalhamento a Baixo Ângulo , Difração de Raios X
12.
Polymers (Basel) ; 12(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321924

RESUMO

This work is focused on the comparison of macro-, micro- and nanomechanical properties of a series of eleven highly homogeneous and chemically very similar polymer networks, consisting of diglycidyl ether of bisphenol A cured with diamine terminated polypropylene oxide. The main objective was to correlate the mechanical properties at multiple length scales, while using very well-defined polymeric materials. By means of synthesis parameters, the glass transition temperature (Tg) of the polymer networks was deliberately varied in a broad range and, as a result, the samples changed their mechanical behavior from very hard and stiff (elastic moduli 4 GPa), through semi-hard and ductile, to very soft and elastic (elastic moduli 0.006 GPa). The mechanical properties were characterized in macroscale (dynamic mechanical analysis; DMA), microscale (quasi-static microindentation hardness testing; MHI) and nanoscale (quasi-static and dynamic nanoindentation hardness testing; NHI). The stiffness-related properties (i.e., storage moduli, indentation moduli and indentation hardness at all length scales) showed strong and statistically significant mutual correlations (all Pearson's correlation coefficients r > 0.9 and corresponding p-values < 0.001). Moreover, the relations among the stiffness-related properties were approximately linear, in agreement with the theoretical prediction. The viscosity-related properties (i.e., loss moduli, damping factors, indentation creep and elastic work of indentation at all length scales) reflected the stiff-ductile-elastic transitions. The fact that the macro-, micro- and nanomechanical properties exhibited the same trends and similar values indicated that not only dynamic, but also quasi-static indentation can be employed as an alternative to well-established DMA characterization of polymer networks.

13.
Front Chem ; 8: 553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793549

RESUMO

For efficient and effective utilization of MXene such as biosensing or advanced applications, interfacial modification of MXene needs to be considered. To this end, we describe modification of Ti3C2Tx MXene by aryldiazonium-based grafting with derivatives bearing a sulfo- (SB) or carboxy- (CB) betaine pendant moiety. Since MXene contains free electrons, betaine derivatives could be grafted to MXene spontaneously. Kinetics of spontaneous grafting of SB and CB toward MXene was electrochemically examined in two different ways, and such experiments confirmed much quicker spontaneous SB grafting compared to spontaneous CB grafting. Moreover, a wide range of electrochemical methods investigating non-Faradaic and Faradaic redox behavior also in the presence of two redox probes together with contact-angle measurements and secondary ion mass spectrometry (SIMS) confirmed substantial differences in formation and interfacial presentation of betaine layers, when spontaneously grafted on MXene. Besides spontaneous grafting of CB and SB toward MXene, also electrochemical grafting by a redox trigger was performed. Results suggest that electrochemical grafting provides a denser layer of SB and CB on the MXene interface compared to spontaneous grafting of SB and CB. Moreover, an electrochemically grafted SB layer offers much lower interfacial resistance and an electrochemically active surface area compared to an electrochemically grafted CB layer. Thus, by adjusting the SB/CB ratio in the solution during electrochemical grafting, it is possible to effectively tune the redox behavior of an MXene-modified interface. Finally, electrochemically grafted CB and SB layers on MXene were evaluated against non-specific protein binding and compared to the anti-fouling behavior of an unmodified MXene interface.

14.
Sensors (Basel) ; 20(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698389

RESUMO

This comprehensive review paper describes recent advances made in the field of electrochemical nanobiosensors for the detection of breast cancer (BC) biomarkers such as specific genes, microRNA, proteins, circulating tumor cells, BC cell lines, and exosomes or exosome-derived biomarkers. Besides the description of key functional characteristics of electrochemical nanobiosensors, the reader can find basic statistic information about BC incidence and mortality, breast pathology, and current clinically used BC biomarkers. The final part of the review is focused on challenges that need to be addressed in order to apply electrochemical nanobiosensors in a clinical practice.


Assuntos
Biomarcadores Tumorais/análise , Técnicas Biossensoriais/instrumentação , Neoplasias da Mama , Técnicas Eletroquímicas/instrumentação , Neoplasias da Mama/diagnóstico , Exossomos , Humanos , MicroRNAs
15.
Mikrochim Acta ; 187(1): 52, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848717

RESUMO

An electrochemical study was performed on the behavior of Ti3C2Tx MXenes prepared by using either HF (MXene1) or LiF/HCl as etchants (MXene2). The use of two redox probes indicates the presence of a higher negative charge density on MXene2 in comparison to MXene1. The characterization of two nanomaterials shows that titanium and fluoride are present higher by one order of magnitude at the interface of MXene2, compared to MXene1. The high Ti and F content is accompanied by a 82-fold larger (249 µA·cm-2 vs. 5.64 µA·cm-2) anodic peak at the peak potential near 0.4 V (vs. Ag/AgCl). Similarly, the peak current on MXene2 is 317-fold higher for the oxygen reduction at pH 7.0 (at a voltage of -0.84 V) and 215-fold higher for the reduction of H2O2 at -0.89 V, when compared to MXene1. Graphical abstractDifference in electrochemical behavior of MXene prepared by HF (MXene1) and LiF/HCl (MXene2) as etchants.

16.
MethodsX ; 6: 1999-2012, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31667097

RESUMO

The article describes preparation, characterization and further modification of hybrid magnetic particles (Au nanoshells with a magnetic core (MPs@silica@Au)) by zwitterionic molecules bearing diazonium functional groups. Such hybrid magnetic particles modified by zwitterionic molecules exhibit the following features: •Responsiveness towards external magnetic field applicable for various enrichment strategies due to magnetic core;•Golden outer layer exhibiting free surface plasmons could be used for grafting of zwitterionic molecules via diazonium functionality;•Zwitterionic interface on such particles provides resistivity towards non-specific protein binding; and at the same time such interface was applied for immobilization of antibodies against prostate specific antigen (PSA) applied for selective enrichment of PSA from serum samples with subsequent electrochemical assays. The approach presented here using hybrid magnetic particles can be easily applied for immobilization of antibodies using a highly robust surface patterning protocols i.e. by formation of a self-assembled monolayer with delivery of functional groups on the outer surface of magnetic particles. Hybrid magnetic particles with immobilized antibodies are applied for highly efficient and quick separation of protein of interest i.e. PSA from complex sample. Finally, hybrid magnetic particles with "fished-out" protein molecules could be incubated with lectins to form a sandwich configuration for glycoprofiling of PSA.

17.
Langmuir ; 35(30): 9831-9840, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31266307

RESUMO

Surface plasmon extinction (SPE) spectra of plasmonic nanoparticles (NPs) are sensitive indicators of their composition, size, shape, interparticle interactions, and of the dielectric constant of their ambient. In this study, rapid changes in SPE spectra of Ag NPs suggesting variations in NP size and concentration were detected after addition of aged tetrahydrofuran (THF). Using time-dependent UV/vis spectroscopy combined with factor analysis, transmission electron microscopy imaging, selected-area electron diffraction, and energy-dispersive X-ray analysis, we observed that an over-limit amount of aged THF fully dissolved Ag NPs with no plasmon recovery. By contrast, an under-limit amount led to incomplete dissolution of Ag NPs and, after reaching the turnover point, to spontaneous recrystallization on residual Ag nuclei, as demonstrated by the SPE band intensity recovery to the original or even higher values. The newly formed Ag NPs were isometric, and their diameter was dependent on the added amount of THF. Furthermore, both Ag NP dissolution and recrystallization were caused by THF peroxides and their reduction products. Therefore, the dissolution of Ag NPs and the resulting hydrosol bleaching may be used as an indicator of the presence of peroxides in THF. Moreover, the reaction of aged THF with Ag NPs can be employed as a tool for tuning the size of Ag NPs in hydrosols.

18.
Interface Focus ; 9(2): 20180077, 2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842876

RESUMO

The initial part of this review details the controversy behind the use of a serological level of prostate-specific antigen (PSA) for the diagnostics of prostate cancer (PCa). Novel biomarkers are in demand for PCa diagnostics, outperforming traditional PSA tests. The review provides a detailed and comprehensive summary that PSA glycoprofiling can effectively solve this problem, thereby considerably reducing the number of unnecessary biopsies. In addition, PSA glycoprofiling can serve as a prognostic PCa biomarker to identify PCa patients with an aggressive form of PCa, avoiding unnecessary further treatments which are significantly life altering (incontinence or impotence).

19.
Biosens Bioelectron ; 131: 24-29, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30798249

RESUMO

In this paper several advances were implemented for glycoprofiling of prostate specific antigen (PSA), what can be applied for better prostate cancer (PCa) diagnostics in the future: 1) application of Au nanoshells with a magnetic core (MP@silica@Au); 2) use of surface plasmons of Au nanoshells with a magnetic core for spontaneous immobilization of zwitterionic molecules via diazonium salt grafting; 3) a double anti-fouling strategy with integration of zwitterionic molecules on Au surface and on MP@silica@Au particles was implemented to resist non-specific protein binding; 4) application of anti-PSA antibody modified Au nanoshells with a magnetic core for enrichment of PSA from a complex matrix of a human serum; 5) direct incubation of anti-PSA modified MP@silica@Au with affinity bound PSA to the lectin modified electrode surface. The electrochemical impedance spectroscopy (EIS) signal was enhanced 43 times integrating Au nanoshells with a magnetic core compared to the biosensor without them. This proof-of-concept study shows that the biosensor could detect PSA down to 1.2 fM and at the same time to glycoprofile such low PSA concentration using a lectin patterned biosensor device. The biosensor offers a recovery index of 108%, when serum sample was spiked with a physiological concentration of PSA (3.5 ng mL-1).


Assuntos
Técnicas Biossensoriais , Espectroscopia Dielétrica/métodos , Antígeno Prostático Específico/isolamento & purificação , Neoplasias da Próstata/diagnóstico , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Ouro/química , Humanos , Masculino , Nanoconchas/química , Próstata/patologia , Antígeno Prostático Específico/química , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA