Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 247: 109850, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295947

RESUMO

Adolescence is a critical period for brain maturation in which this organ undergoes critical plasticity mechanisms that increase its vulnerability to the effects of alcohol. Significantly, ethanol-induced disruption of hippocampal neurogenesis has been related to cognitive decline in adulthood. During adolescence, the maturation of perineuronal nets (PNNs), extracellular matrix structures highly affected by ethanol consumption, plays a fundamental role in neurogenesis and plasticity in the hippocampus. Receptor Protein Tyrosine Phosphatase (RPTP) ß/ζ is a critical anchor point for PNNs on the cell surface. Using the adolescent intermittent access to ethanol (IAE) model, we previously showed that MY10, a small-molecule inhibitor of RPTPß/ζ, reduces chronic ethanol consumption in adolescent male mice but not in females and prevents IAE-induced neurogenic loss in the male hippocampus. We have now tested if these effects of MY10 are related to sex-dependent modulatory actions on ethanol-induced effects in PNNs. Our findings suggest a complex interplay between alcohol exposure, neural structures, and sex-related differences in the modulation of PNNs and parvalbumin (PV)-positive cells in the hippocampus. In general, IAE increased the number of PV + cells in the female hippocampus and reduced PNNs intensity in different hippocampal regions, particularly in male mice. Notably, we found that pharmacological inhibition of RPTPß/ζ with MY10 regulates ethanol-induced alterations of PNNs intensity, which correlates with the protection of hippocampal neurogenesis from ethanol neurotoxic effects and may be related to the capacity of MY10 to increase the gene expression of key components of PNNs.


Assuntos
Etanol , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Camundongos , Masculino , Animais , Feminino , Etanol/farmacologia , Etanol/metabolismo , Matriz Extracelular/metabolismo , Hipocampo/metabolismo , Consumo de Bebidas Alcoólicas
2.
Biomedicines ; 11(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37238989

RESUMO

Binge drinking during adolescence increases the risk of alcohol use disorder, possibly by involving alterations of neuroimmune responses. Pleiotrophin (PTN) is a cytokine that inhibits Receptor Protein Tyrosine Phosphatase (RPTP) ß/ζ. PTN and MY10, an RPTPß/ζ pharmacological inhibitor, modulate ethanol behavioral and microglial responses in adult mice. Now, to study the contribution of endogenous PTN and the implication of its receptor RPTPß/ζ in the neuroinflammatory response in the prefrontal cortex (PFC) after acute ethanol exposure in adolescence, we used MY10 (60 mg/kg) treatment and mice with transgenic PTN overexpression in the brain. Cytokine levels by X-MAP technology and gene expression of neuroinflammatory markers were determined 18 h after ethanol administration (6 g/kg) and compared with determinations performed 18 h after LPS administration (5 g/kg). Our data indicate that Ccl2, Il6, and Tnfa play important roles as mediators of PTN modulatory actions on the effects of ethanol in the adolescent PFC. The data suggest PTN and RPTPß/ζ as targets to differentially modulate neuroinflammation in different contexts. In this regard, we identified for the first time important sex differences that affect the ability of the PTN/RPTPß/ζ signaling pathway to modulate ethanol and LPS actions in the adolescent mouse brain.

3.
Neuropharmacology ; 227: 109438, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706907

RESUMO

Pleiotrophin (PTN) is a cytokine that modulates ethanol drinking and reward and regulates glial responses in different contexts. PTN is an inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) ß/ζ. Inhibition of RPTPß/ζ reduces binge-like drinking in adult male mice. Whether inhibition of RPTPß/ζ is effective in reducing ethanol consumption during adolescence and in both sexes remained to be studied. In this work, male and female adolescent mice underwent an intermittent access to ethanol (IAE) 2-bottle choice protocol. Treatment with MY10 (60 mg/kg, i.g.), a small-molecule RPTPß/ζ inhibitor, reduced chronic 3-week ethanol consumption only in male mice. We detected an ethanol-induced overall decrease in hippocampal GFAPir and Iba1ir, independently of the treatment received, suggesting that RPTPß/ζ is not key in the regulation of IAE-induced glial responses. However, we found a significant negative correlation between the size of microglial cells and the number of hippocampal neuronal progenitors only in male mice after IAE. This correlation was disrupted by treatment with MY10 before each drinking session, which may be related to the ability of MY10 to regulate the intensity of the perineuronal nets (PNNs) in the hippocampus in a sex-dependent manner. The data show for the first time that inhibition of RPTPß/ζ reduces chronic voluntary ethanol consumption in adolescent mice in a sex-dependent manner. In addition, we show evidence for sex-specific differences in the effects of IAE on glial responses and hippocampal neurogenesis, which may be related to different actions of the RPTPß/ζ signalling pathway in the brains of male and female mice.


Assuntos
Etanol , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Feminino , Camundongos , Masculino , Animais , Etanol/farmacologia , Transdução de Sinais , Neuroglia/metabolismo , Citocinas/metabolismo , Neurogênese
4.
Neurotoxicology ; 94: 98-107, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402194

RESUMO

Adolescence is a critical period for brain maturation in which this organ is more vulnerable to the damaging effects of ethanol. Administration of ethanol in mice induces a rapid cerebral upregulation of pleiotrophin (PTN), a cytokine that regulates the neuroinflammatory processes induced by different insults and the behavioral effects of ethanol. PTN binds Receptor Protein Tyrosine Phosphatase (RPTP) ß/ζ and inhibits its phosphatase activity, suggesting that RPTPß/ζ may be involved in the regulation of ethanol effects. To test this hypothesis, we have treated adolescent mice with the RPTPß/ζ inhibitor MY10 (60 mg/kg) before an acute ethanol (6 g/kg) administration. Treatment with MY10 completely prevented the ethanol-induced neurogenic loss in the hippocampus of both male and female mice. In flow cytometry studies, ethanol tended to increase the number of NeuN+/activated Caspase-3+ cells particularly in female mice, but no significant effects were found. Ethanol increased Iba1+ cell area and the total marked area in the hippocampus of female mice, suggesting sex differences in ethanol-induced microgliosis. In addition, ethanol reduced the circulating levels of IL-6 and IL-10 in both sexes, although this reduction was only found significant in males and not affected by MY10 treatment. Interestingly, MY10 alone increased the total marked area and the number of Iba1+ cells only in the female hippocampus, but tended to reduce the circulating levels of TNF-α only in male mice. In summary, the data identify a novel modulatory role of RPTPß/ζ on ethanol-induced loss of hippocampal neurogenesis, which seems unrelated to glial and inflammatory responses. The data also suggest sex differences in RPTPß/ζ function that may be relevant to immune responses and ethanol-induced microglial responses.


Assuntos
Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Transdução de Sinais , Animais , Feminino , Masculino , Camundongos , Citocinas/metabolismo , Etanol/toxicidade , Hipocampo/metabolismo , Neurogênese , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo
5.
Sci Rep ; 10(1): 20259, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219280

RESUMO

Pleiotrophin (PTN) is a cytokine that is upregulated in different neuroinflammatory disorders. Using mice with transgenic PTN overexpression in the brain (Ptn-Tg), we have found a positive correlation between iNos and Tnfα mRNA and Ptn mRNA levels in the prefrontal cortex (PFC) of LPS-treated mice. PTN is an inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) ß/ζ, which is mainly expressed in the central nervous system. We aimed to test if RPTPß/ζ is involved in the modulation of neuroinflammatory responses using specific inhibitors of RPTPß/ζ (MY10 and MY33-3). Treatment with MY10 potentiated LPS-induced microglial responses in the mouse PFC. Surprisingly, MY10 caused a decrease in LPS-induced NF-κB p65 expression, suggesting that RPTPß/ζ may be involved in a novel mechanism of potentiation of microglial activation independent of the NF-κB p65 pathway. MY33-3 and MY10 limited LPS-induced nitrites production and iNos increases in BV2 microglial cells. SH-SY5Y neuronal cells were treated with the conditioned media from MY10/LPS-treated BV2 cells. Conditioned media from non-stimulated and from LPS-stimulated BV2 cells increased the viability of SH-SY5Y cultures. RPTPß/ζ inhibition in microglial cells disrupted this neurotrophic effect of microglia, suggesting that RPTPß/ζ plays a role in the neurotrophic phenotype of microglia and in microglia-neuron communication.


Assuntos
Comunicação Celular/fisiologia , Microglia/citologia , Neurônios/citologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/fisiologia , Animais , Proteínas de Transporte/genética , Citocinas/genética , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA