Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 5): 127145, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37778590

RESUMO

Marine environments represent an incredible source of biopolymers with potential biomedical applications. Recently, drug delivery studies have received great attention for the increasing need to improve site specificity, therapeutic value, and bioavailability, reducing off-target effects. Marine polymers, such as alginate, carrageenan, collagen, chitosan, and silica, have reported unique biochemical features, allowing an efficient binding with drugs, and a controlled release to the target tissue, also obtainable through "green processes". In the present review, we i) analysed the last ten years of scientific peer-reviewed literature; ii) divided the articles based on the achieved experimental phases, tagged as chemistry, drug release, and drug delivery, and iii) compared the best performances among marine polymers extracted from micro- and macro-organisms. Many reviews describe drug carriers from marine organisms, focusing on a single biopolymer or a chemical class. Our study is a groundbreaking literature collection, representing the first thorough investigation of all marine biopolymers described. Most articles report experimental results on the chemical characterisation of marine biopolymers and their in vitro behaviour as drug carriers, although development processes and commercial applications are still in the early stages. Hence, the next efforts should be focused on the sustainable production of marine polymers and final product development.


Assuntos
Sistemas de Liberação de Medicamentos , Dióxido de Silício , Sistemas de Liberação de Medicamentos/métodos , Polissacarídeos/química , Portadores de Fármacos/química , Biopolímeros/química , Polímeros/química , Proteínas , Lipídeos
2.
Mar Drugs ; 21(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37233504

RESUMO

Chemical interactions have been shown to regulate several marine life processes, including selection of food sources, defense, behavior, predation, and mate recognition. These chemical communication signals have effects not only at the individual scale, but also at population and community levels. This review focuses on chemical interactions between marine fungi and microalgae, summarizing studies on compounds synthetized when they are cultured together. In the current study, we also highlight possible biotechnological outcomes of the synthetized metabolites, mainly for human health applications. In addition, we discuss applications for bio-flocculation and bioremediation. Finally, we point out the necessity of further investigating microalgae-fungi chemical interactions because it is a field still less explored compared to microalga-bacteria communication and, considering the promising results obtained until now, it is worthy of further research for scientific advancement in both ecology and biotechnology fields.


Assuntos
Microalgas , Humanos , Microalgas/metabolismo , Biotecnologia/métodos , Ecologia , Fungos/metabolismo , Interações Microbianas
3.
Mar Drugs ; 20(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35877717

RESUMO

A local strain of Nannochloropsis granulata (Ng) has been reported as the most productive microalgal strain in terms of both biomass yield and lipid content when cultivated in photobioreactors that simulate the light and temperature conditions during the summer on the west coast of Sweden. To further increase the biomass and the biotechnological potential of this strain in these conditions, mixotrophic growth (i.e., the simultaneous use of photosynthesis and respiration) with glycerol as an external carbon source was investigated in this study and compared with phototrophic growth that made use of air enriched with 1-2% CO2. The addition of either glycerol or CO2-enriched air stimulated the growth of Ng and theproduction of high-value long-chain polyunsaturated fatty acids (EPA) as well as the carotenoid canthaxanthin. Bioassays in human prostate cell lines indicated the highest antitumoral activity for Ng extracts and fractions from mixotrophic conditions. Metabolomics detected betaine lipids specifically in the bioactive fractions, suggesting their involvement in the observed antitumoral effect. Genes related to autophagy were found to be upregulated by the most bioactive fraction, suggesting a possible therapeutic target against prostate cancer progression. Taken together, our results suggest that the local Ng strain can be cultivated mixotrophically in summer conditions on the west coast of Sweden for the production of high-value biomass containing antiproliferative compounds, carotenoids, and EPA.


Assuntos
Microalgas , Estramenópilas , Biomassa , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Glicerol , Humanos , Microalgas/metabolismo , Estramenópilas/metabolismo , Suécia
4.
Front Aging Neurosci ; 14: 892764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615590

RESUMO

Visual impairment, at different degrees, produce a reduction of patient wellness which negatively impact in many aspects of working and social activities. Eye diseases can have common cellular damages or dysfunctions (e.g., inflammation, oxidative stress, neuronal degeneration), and can target several eye compartments, primarily cornea and retina. Marine organisms exhibit high chemical diversity due to the wide range of marine ecosystems where they live; thus, molecules of marine origin are gaining increasing attention for the development of new mutation-independent therapeutic strategies, to reduce the progression of retina pathologies having a multifactorial nature and characterized by high genetic heterogeneity. This review aims to describe marine natural products reported in the recent literature that showed promising therapeutic potential for the development of new drugs to be used to contrast the progression of eye pathologies. These natural compounds exhibited beneficial and protective properties on different in vitro cell systems and on in vivo models, through different mechanisms of action, including anti-inflammatory, antioxidant, antiangiogenic/vasoprotective or cytoprotective effects. We report compounds produced by several marine source (e.g., sponges, algae, shrimps) that can be administrated as food or with target-specific strategies. In addition, we describe and discuss the uses of opsin family proteins from marine organisms for the optimization of new optogenetic therapeutic strategies.

5.
Mar Drugs ; 19(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34822511

RESUMO

The marine environment is potentially a prolific source of small molecules with significant biological activities. In recent years, the development of new chromatographic phases and the progress in cell and molecular techniques have facilitated the search for marine natural products (MNPs) as novel pharmacophores and enhanced the success rate in the selection of new potential drug candidates. However, most of this exploration has so far been driven by anticancer research and has been limited to a reduced number of taxonomic groups. In this article, we report a test study on the screening potential of an in-house library of natural small molecules composed of 285 samples derived from 57 marine organisms that were chosen from among the major eukaryotic phyla so far represented in studies on bioactive MNPs. Both the extracts and SPE fractions of these organisms were simultaneously submitted to three different bioassays-two phenotypic and one enzymatic-for cytotoxic, antidiabetic, and antibacterial activity. On the whole, the screening of the MNP library selected 11 potential hits, but the distribution of the biological results showed that SPE fractionation increased the positive score regardless of the taxonomic group. In many cases, activity could be detected only in the enriched fractions after the elimination of the bulky effect due to salts. On a statistical basis, sponges and molluscs were confirmed to be the most significant source of cytotoxic and antimicrobial products, but other phyla were found to be effective with the other therapeutic targets.


Assuntos
Antineoplásicos/farmacologia , Organismos Aquáticos , Animais , Antineoplásicos/química , Fracionamento Químico , Descoberta de Drogas , Moluscos , Poríferos
6.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34445761

RESUMO

Natural products of microbial origin have inspired most of the commercial pharmaceuticals, especially those from Actinobacteria. However, the redundancy of molecules in the discovery process represents a serious issue. The untargeted approach, One Strain Many Compounds (OSMAC), is one of the most promising strategies to induce the expression of silent genes, especially when combined with genome mining and advanced metabolomics analysis. In this work, the whole genome of the marine isolate Rhodococcus sp. I2R was sequenced and analyzed by antiSMASH for the identification of biosynthetic gene clusters. The strain was cultivated in 22 different growth media and the generated extracts were subjected to metabolomic analysis and functional screening. Notably, only a single growth condition induced the production of unique compounds, which were partially purified and structurally characterized by liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). This strategy led to identifying a bioactive fraction containing >30 new glycolipids holding unusual functional groups. The active fraction showed a potent antiviral effect against enveloped viruses, such as herpes simplex virus and human coronaviruses, and high antiproliferative activity in PC3 prostate cancer cell line. The identified compounds belong to the biosurfactants class, amphiphilic molecules, which play a crucial role in the biotech and biomedical industry.


Assuntos
Antivirais/metabolismo , Glicolipídeos/metabolismo , Rhodococcus/metabolismo , Animais , Antivirais/análise , Chlorocebus aethiops , Técnicas de Cultura , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/metabolismo , Genoma Bacteriano , Glicolipídeos/química , Humanos , Metaboloma , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células PC-3 , Rhodococcus/química , Rhodococcus/genética , Succinatos/metabolismo , Tensoativos/química , Tensoativos/metabolismo , Células Vero
7.
Mar Drugs ; 19(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923826

RESUMO

Cyanobacteria are a diversified phylum of nitrogen-fixing, photo-oxygenic bacteria able to colonize a wide array of environments. In addition to their fundamental role as diazotrophs, they produce a plethora of bioactive molecules, often as secondary metabolites, exhibiting various biological and ecological functions to be further investigated. Among all the identified species, cyanobacteria are capable to embrace symbiotic relationships in marine environments with organisms such as protozoans, macroalgae, seagrasses, and sponges, up to ascidians and other invertebrates. These symbioses have been demonstrated to dramatically change the cyanobacteria physiology, inducing the production of usually unexpressed bioactive molecules. Indeed, metabolic changes in cyanobacteria engaged in a symbiotic relationship are triggered by an exchange of infochemicals and activate silenced pathways. Drug discovery studies demonstrated that those molecules have interesting biotechnological perspectives. In this review, we explore the cyanobacterial symbioses in marine environments, considering them not only as diazotrophs but taking into consideration exchanges of infochemicals as well and emphasizing both the chemical ecology of relationship and the candidate biotechnological value for pharmaceutical and nutraceutical applications.


Assuntos
Organismos Aquáticos/microbiologia , Bioprospecção , Cianobactérias/metabolismo , Suplementos Nutricionais , Descoberta de Drogas , Ecossistema , Preparações Farmacêuticas/isolamento & purificação , Animais , Evolução Molecular , Humanos , Metabolismo Secundário , Simbiose
8.
Mar Drugs ; 19(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467094

RESUMO

Marine organisms with fast growth rates and great biological adaptive capacity might have biotechnological interests, since ecological competitiveness might rely on enhanced physiological or biochemical processes' capability promoting protection, defense, or repair intracellular damages. The invasive seagrass Halophila stipulacea, a non-indigenous species widespread in the Mediterranean Sea, belongs to this category. This is the premise to investigate the biotechnological interest of this species. In this study, we investigated the antioxidant activity in vitro, both in scavenging reactive oxygen species and in repairing damages from oxidative stress on the fibroblast human cell line WI-38. Together with the biochemical analysis, the antioxidant activity was characterized by the study of the expression of oxidative stress gene in WI-38 cells in presence or absence of the H. stipulacea extract. Concomitantly, the pigment pool of the extracts, as well as their macromolecular composition was characterized. This study was done separately on mature and young leaves. Results indicated that mature leaves exerted a great activity in scavenging reactive oxygen species and repairing damages from oxidative stress in the WI-38 cell line. This activity was paralleled to an enhanced carotenoids content in the mature leaf extracts and a higher carbohydrate contribution to organic matter. Our results suggest a potential of the old leaves of H. stipulacea as oxidative stress damage protecting or repair agents in fibroblast cell lines. This study paves the way to transmute the invasive H. stipulacea environmental threat in goods for human health.


Assuntos
Antioxidantes/farmacologia , Hydrocharitaceae , Espécies Introduzidas , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/isolamento & purificação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Feto , Humanos , Estresse Oxidativo/fisiologia , Extratos Vegetais/isolamento & purificação , Plantas Tolerantes a Sal
9.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218067

RESUMO

The antioxidant activity of natural compounds consists in their ability to modulate gene and protein expression, thus inducing an integrated cell protective response and repair processes against oxidative stress. New screening tools and methodologies are crucial for the actual requirement of new products with antioxidant activity to boost endogenous oxidative stress responsive pathways, Reactive Oxygen Species (ROS) metabolism and immune system activity, preserving human health and wellness. In this study, we performed and tested an integrated oxidative stress analysis, using DPPH assay and PNT2 cells injured with DPPH. We firstly investigated the mechanism of action of the oxidising agent (DPPH) on PNT2 cells, studying the variation in cell viability, oxidative stress genes, inflammatory mediator and ROS levels. The results reveal that DPPH activated ROS production and release of Prostaglandin E2 in PNT2 at low and intermediate doses, while cells switched from survival to cell death signals at high doses of the oxidising agent. This new in vitro oxidative stress model was validated by using Trolox, ß-carotene and total extract of the green microalga Testraselmis suecica. Only the T. suecica extract can completely counteract DPPH-induced injury, since its chemical complexity demonstrated a multilevel protecting and neutralising effect against oxidative stress in PNT2.


Assuntos
Antioxidantes/farmacologia , Compostos de Bifenilo/farmacologia , Células Epiteliais/efeitos dos fármacos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Picratos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Clorófitas/química , Cromanos/farmacologia , Células Epiteliais/metabolismo , Humanos , Masculino , Extratos Vegetais/farmacologia , Próstata/citologia , Próstata/metabolismo , Substâncias Protetoras/farmacologia , beta Caroteno/farmacologia
10.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32708040

RESUMO

Programmed cell death, such as apoptosis and autophagy, are key processes that are activated early on during development, leading to remodelling in embryos and homeostasis in adult organisms. Genomic conservation of death factors has been largely investigated in the animal and plant kingdoms. In this study, we analysed, for the first time, the expression profile of 11 genes involved in apoptosis (extrinsic and intrinsic pathways) and autophagy in sea urchin Paracentrotus lividus embryos exposed to antiproliferative polyunsaturated aldehydes (PUAs), and we compared these results with those obtained on the human cell line A549 treated with the same molecules. We found that sea urchins and human cells activated, at the gene level, a similar cell death response to these compounds. Despite the evolutionary distance between sea urchins and humans, we observed that the activation of apoptotic and autophagic genes in response to cytotoxic compounds is a conserved process. These results give first insight on death mechanisms of P. lividus death mechanisms, also providing additional information for the use of this marine organism as a useful in vitro model for the study of cell death signalling pathways activated in response to chemical compounds.


Assuntos
Aldeídos/farmacologia , Apoptose/efeitos dos fármacos , Diatomáceas/química , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Paracentrotus/embriologia , Células A549 , Animais , Apoptose/genética , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Paracentrotus/genética , Paracentrotus/metabolismo
11.
Antioxidants (Basel) ; 8(6)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31159429

RESUMO

Little is known on the antioxidant activity modulation in microalgae, even less in diatoms. Antioxidant molecule concentrations and their modulation in microalgae has received little attention and the interconnection between light, photosynthesis, photoprotection, and antioxidant network in microalgae is still unclear. To fill this gap, we selected light as external forcing to drive physiological regulation and acclimation in the costal diatom Skeletonema marinoi. We investigated the role of light regime on the concentration of ascorbic acid, phenolic compounds and among them flavonoids and their connection with photoprotective mechanisms. We compared three high light conditions, differing in either light intensity or wave distribution, with two low light conditions, differing in photoperiod, and a prolonged darkness. The change in light distribution, from sinusoidal to square wave distribution was also investigated. Results revealed a strong link between photoprotection, mainly relied on xanthophyll cycle operation, and the antioxidant molecules and activity modulation. This study paves the way for further investigation on the antioxidant capacity of diatoms, which resulted to be strongly forced by light conditions, also in the view of their potential utilization in nutraceuticals or new functional cosmetic products.

12.
Nutrients ; 11(6)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146462

RESUMO

Epidemiological studies are providing strong evidence on beneficial health effects from dietary measures, leading scientists to actively investigate which foods and which specific agents in the diet can prevent diseases. Public health officers and medical experts should collaborate toward the design of disease prevention diets for nutritional intervention. Functional foods are emerging as an instrument for dietary intervention in disease prevention. Functional food products are technologically developed ingredients with specific health benefits. Among promising sources of functional foods and chemopreventive diets of interest, microalgae are gaining worldwide attention, based on their richness in high-value products, including carotenoids, proteins, vitamins, essential amino acids, omega-rich oils and, in general, anti-inflammatory and antioxidant compounds. Beneficial effects of microalgae on human health and/or wellness could in the future be useful in preventing or delaying the onset of cancer and cardiovascular diseases. During the past decades, microalgal biomass was predominately used in the health food market, with more than 75% of the annual microalgal biomass production being employed for the manufacture of powders, tablets, capsules or pastilles. In this review, we report and discuss the present and future role of microalgae as marine sources of functional foods/beverages for human wellbeing, focusing on perspectives in chemoprevention. We dissected this topic by analyzing the different classes of microalgal compounds with health outputs (based on their potential chemoprevention activities), the biodiversity of microalgal species and how to improve their cultivation, exploring the perspective of sustainable food from the sea.


Assuntos
Anticarcinógenos/uso terapêutico , Antineoplásicos/uso terapêutico , Suplementos Nutricionais , Alimento Funcional , Microalgas/química , Neoplasias/prevenção & controle , Animais , Anticarcinógenos/efeitos adversos , Anticarcinógenos/isolamento & purificação , Antineoplásicos/efeitos adversos , Antineoplásicos/isolamento & purificação , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Dieta Saudável , Suplementos Nutricionais/efeitos adversos , Alimento Funcional/efeitos adversos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Valor Nutritivo , Fatores de Proteção , Fatores de Risco
13.
Genome Biol Evol ; 11(2): 586-596, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30698765

RESUMO

Apoptosis and autophagy are fundamental mechanisms of programed cell death activated during protostome and deuterostome embryonic development, contributing to the creation and remodeling of different anatomical structures. Programed cell death has been investigated at morphological and biochemical levels, but there is a lack of information concerning gene expression of death factors during deuterostome embryonic development. In this study, we analyze the expression patterns of 13 genes involved in autophagy, extrinsic and intrinsic apoptosis during blastula, gastrula, and pluteus stages of the sea urchin Paracentrotus lividus embryonic development. Results suggested the occurrence of all death mechanisms investigated, highlighting the simultaneous involvement of apoptosis and autophagy during embryonic development. In particular, gastrula was the developmental stage where the majority of death genes were highly expressed. During gastrulation apoptotic processes are fundamental for tissue remodeling, such as cavity formation and removal of inner ectodermal cells. This is the first report that identifies a panel of cell death genes in the P. lividus genome and analyzes their expression variations during ontogenesis.


Assuntos
Apoptose/genética , Autofagia/genética , Desenvolvimento Embrionário , Paracentrotus/genética , Animais , Feminino , Masculino , Paracentrotus/embriologia , Transcriptoma
14.
Mar Drugs ; 16(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545093

RESUMO

Marine dinoflagellates are a valuable source of bioactive molecules. Many species produce cytotoxic compounds and some of these compounds have also been investigated for their anticancer potential. Here, we report the first investigation of the toxic dinoflagellate Alexandrium minutum as source of water-soluble compounds with antiproliferative activity against human lung cancer cells. A multi-step enrichment of the phenol⁻water extract yielded a bioactive fraction with specific antiproliferative effect (IC50 = 0.4 µg·mL-1) against the human lung adenocarcinoma cells (A549 cell line). Preliminary characterization of this material suggested the presence of glycoprotein with molecular weight above 20 kDa. Interestingly, this fraction did not exhibit any cytotoxicity against human normal lung fibroblasts (WI38). Differential gene expression analysis in A549 cancer cells suggested that the active fraction induces specific cell death, triggered by mitochondrial autophagy (mitophagy). In agreement with the cell viability results, gene expression data also showed that no mitophagic event was activated in normal cells WI38.


Assuntos
Antineoplásicos/farmacologia , Organismos Aquáticos/química , Dinoflagellida/química , Toxinas Marinhas/farmacologia , Mitofagia/efeitos dos fármacos , Células A549 , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Toxinas Marinhas/isolamento & purificação , Toxinas Marinhas/uso terapêutico
15.
Mar Drugs ; 16(8)2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042358

RESUMO

Astaxanthin is a carotenoid with powerful antioxidant and anti-inflammatory activity produced by several freshwater and marine microorganisms, including bacteria, yeast, fungi, and microalgae. Due to its deep red-orange color it confers a reddish hue to the flesh of salmon, shrimps, lobsters, and crayfish that feed on astaxanthin-producing organisms, which helps protect their immune system and increase their fertility. From the nutritional point of view, astaxanthin is considered one of the strongest antioxidants in nature, due to its high scavenging potential of free radicals in the human body. Recently, astaxanthin is also receiving attention for its effect on the prevention or co-treatment of neurological pathologies, including Alzheimer and Parkinson diseases. In this review, we focus on the neuroprotective properties of astaxanthin and explore the underlying mechanisms to counteract neurological diseases, mainly based on its capability to cross the blood-brain barrier and its oxidative, anti-inflammatory, and anti-apoptotic properties.


Assuntos
Organismos Aquáticos , Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Radicais Livres/metabolismo , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Oxirredução/efeitos dos fármacos , Xantofilas/farmacologia , Xantofilas/uso terapêutico
16.
Mar Drugs ; 16(6)2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29843412

RESUMO

The carotenoid astaxanthin has strong antioxidant properties with beneficial effects for various degenerative diseases. This carotenoid is produced by some microalgae species when cultivated in particular conditions, and, interestingly, it is a predominant carotenoid in aquatic animals throughout a broad range of taxa. Recently, astaxanthin was detected in the eggs of the sea urchin Arbacia lixula in relevant concentrations when this organism was maintained in culture. These results have paved the way for deeper research into astaxanthin production by this species, particularly in regards to how astaxanthin production can be modulated by diet. Results showed that the highest content of astaxanthin in eggs was observed in sea urchins fed on a diet enriched with Spirulina platensis. This result was confirmed by the high antioxidant activity recorded in the egg extracts of these animals. Our results suggest that (i) the sea urchin A. lixula is able to synthesize astaxanthin from precursors obtained from food, and (ii) it is possible to modulate the astaxanthin accumulation in sea urchin eggs by modifying the proportions of different food ingredients provided in their diet. This study demonstrates the large potential of sea urchin cultivation for the eco-sustainable production of healthy supplements for nutraceutical applications.


Assuntos
Arbacia/metabolismo , Biotecnologia/métodos , Suplementos Nutricionais , Spirulina , Animais , Xantofilas/biossíntese
17.
Mar Biotechnol (NY) ; 20(3): 343-352, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29679250

RESUMO

Dinoflagellates are one of the most important components in marine phytoplankton, second only to diatoms as primary producers. Dinoflagellates have also been reported to produce bioactive secondary metabolites such as polyethers and macrolides with potential applications as pharmaceuticals. Here, we tested the effect of the organic extract and its related enriched extracts from solid-phase extraction (SPE) of a strain of the dinoflagellate Alexandrium andersoni. We found that the SPE extracts induced high cytotoxicity towards two cancer cell lines (A549 lung cancer and HT29 colorectal cancer) without affecting normal cell viability. The SPE extracts activated two different cell death pathways in the two tumor cell lines at the gene expression level, with the involvement of the major mediators of the tumor necrosis factor (TNF) cell signaling cascade. In HT29 cells, in addition to TNF activation, a death signaling pathway in response to DNA damage was also induced. This is an interesting finding since the HT29 cell line is highly aggressive since it is p53 gene-defect and this DNA instability renders this type of cancer very resistant towards all chemotherapeutic agents. Another significant result is that two distinct chemical fractions were selectively able to induce different and specific responses on the two different tumor cells treated.


Assuntos
Antineoplásicos/farmacologia , Dinoflagellida/química , Células A549 , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Humanos , Transdução de Sinais/efeitos dos fármacos , Técnicas de Síntese em Fase Sólida
18.
Sci Rep ; 8(1): 1190, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352134

RESUMO

In order to exploit the rich reservoir of marine cold-adapted bacteria as a source of bioactive metabolites, ethyl acetate crude extracts of thirteen polar marine bacteria were tested for their antiproliferative activity on A549 lung epithelial cancer cells. The crude extract from Pseudoalteromonas haloplanktis TAC125 was the most active in inhibiting cell proliferation. Extensive bioassay-guided purification and mass spectrometric characterization allowed the identification of 4-hydroxybenzoic acid (4-HBA) as the molecule responsible for this bioactivity. We further demonstrate that 4-HBA inhibits A549 cancer cell proliferation with an IC50 value ≤ 1 µg ml-1, and that the effect is specific, since the other two HBA isomers (i.e. 2-HBA and 3-HBA) were unable to inhibit cell proliferation. The effect of 4-HBA is also selective since treatment of normal lung epithelial cells (WI-38) with 4-HBA did not affect cell viability. Finally, we show that 4-HBA is able to activate, at the gene and protein levels, a specific cell death signaling pathway named pyroptosis. Accordingly, the treatment of A549 cells with 4-HBA induces the transcription of (amongst others) caspase-1, IL1ß, and IL18 encoding genes. Studies needed for the elucidation of mode of action of 4-HBA will be instrumental in depicting novel details of pyroptosis.


Assuntos
Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Neoplasias Pulmonares/metabolismo , Parabenos/farmacologia , Pseudoalteromonas/química , Piroptose/efeitos dos fármacos , Adenocarcinoma de Pulmão , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Biomarcadores , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Parabenos/química , Parabenos/isolamento & purificação , Pseudoalteromonas/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Antioxidants (Basel) ; 6(4)2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29168774

RESUMO

As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and ß-carotene) that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein), which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i) the biological functions of carotenoids and their benefits for human health, (ii) the most common carotenoids from marine organisms and (iii) carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production.

20.
Mar Drugs ; 15(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635649

RESUMO

Several echinoderms, including sea urchins, are valuable sources of bioactive compounds but their nutraceutical potential is largely unexplored. In fact, the gonads of some sea urchin species contain antioxidants including carotenoids and polyhydroxylated naphthoquinones (PHNQ's), such as echinochrome A. Astaxanthin is known to have particular bioactivity for the prevention of neurodegenerative diseases. This carotenoid is produced by microalgae, while several marine invertebrates can bioaccumulate or synthetize it from metabolic precursors. We determined the carotenoid content and analyzed the bioactivity potential of non-harvested Atlantic-Mediterranean sea urchin Arbacia lixula. The comparison of methanol crude extracts obtained from eggs of farmed and wild specimens revealed a higher bioactivity in farmed individuals fed with a customized fodder. HPLC-analysis revealed a high concentration of astaxanthin (27.0 µg/mg), which was the only pigment observed. This study highlights the potential of farmed A. lixula as a new source of the active stereoisomer of astaxanthin.


Assuntos
Arbacia/química , Ouriços-do-Mar/química , Ração Animal , Animais , Carotenoides/química , Gônadas/química , Xantofilas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA