Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36892008

RESUMO

New conductive materials for tissue engineering are needed for the development of regenerative strategies for nervous, muscular, and heart tissues. Polycaprolactone (PCL) is used to obtain biocompatible and biodegradable nanofiber scaffolds by electrospinning. MXenes, a large class of biocompatible 2D nanomaterials, can make polymer scaffolds conductive and hydrophilic. However, an understanding of how their physical properties affect potential biomedical applications is still lacking. We immobilized Ti3C2Tx MXene in several layers on the electrospun PCL membranes and used positron annihilation analysis combined with other techniques to elucidate the defect structure and porosity of nanofiber scaffolds. The polymer base was characterized by the presence of nanopores. The MXene surface layers had abundant vacancies at temperatures of 305-355 K, and a voltage resonance at 8 × 104 Hz with the relaxation time of 6.5 × 106 s was found in the 20-355 K temperature interval. The appearance of a long-lived component of the positron lifetime was observed, which was dependent on the annealing temperature. The study of conductivity of the composite scaffolds in a wide temperature range, including its inductive and capacity components, showed the possibility of the use of MXene-coated PCL membranes as conductive biomaterials. The electronic structure of MXene and the defects formed in its layers were correlated with the biological properties of the scaffolds in vitro and in bacterial adhesion tests. Double and triple MXene coatings formed an appropriate environment for cell attachment and proliferation with mild antibacterial effects. A combination of structural, chemical, electrical, and biological properties of the PCL-MXene composite demonstrated its advantage over the existing conductive scaffolds for tissue engineering.

2.
Materials (Basel) ; 15(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431391

RESUMO

In this paper, the frequency-temperature dependence of the conductivity and dielectric permittivity of nc-TixZr1-xC+α-Cy (0.0 ≤ x ≤ 1.0) nanocomposites produced by dual-source magnetron sputtering was determined. The films produced are biphasic layers with an excess of amorphous carbon relative to the stoichiometric composition of TixZr1-xC. The matrix was amorphous carbon, and the dispersed phase was carbide nanoparticles. AC measurements were performed in the frequency range of 50 Hz-5 MHz at temperatures from 20 K to 373 K. It was found that both conductivity and permittivity relationships are determined by three tunneling mechanisms, differing in relaxation times. The maxima in the low- and high-frequency regions decrease with increasing temperature. The maximum in the mid-frequency region increases with increasing temperature. The low-frequency maximum is due to electron tunneling between the carbon films on the surface of the carbide nanoshells. The mid-frequency maximum is due to electron transitions between the nano size grains. The high-frequency maximum is associated with tunneling between the nano-grains and the carbon shells. It has been established that dipole relaxation occurs in the nanocomposites according to the Cole-Cole mechanism. The increase in static dielectric permittivity with increasing measurement temperature is indicative of a step polarisation mechanism. In the frequency region above 1 MHz, anomalous dispersion-an increase in permittivity with increasing frequency-was observed for all nanocomposite contents.

3.
Nanomaterials (Basel) ; 12(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36234577

RESUMO

This paper presents the results of AC electrical measurements of Zn-SiO2/Si nanocomposites obtained by ion implantation. Implantation of Zn ions was carried out into thermally oxidized p-type silicon substrates with energy of 150 keV and fluence of 7.5 × 1016 ion·cm-2 at a temperature of 773 K, and is thus called implantation in "hot" conditions. The samples were annealed in ambient air for 60 min at 973 K. Electrical measurements of Zn-SiO2/Si nanocomposites were carried out before and after annealing. Measurements were performed in the temperature range from 20 K to 375 K. The measurement parameters were the resistance Rp, the capacitance Cp, the phase shift angle θ and the tangent of loss angle tanδ, as a function of the frequency in the range from 50 Hz to 5 MHz. Based on the characteristics σ(f) and the Jonscher power law before and after sample annealing, the values of the exponent s were calculated depending on the measurement temperature. Based on this, the conductivity models were matched. Additionally, the real and imaginary parts of the dielectric permittivity were determined, and on their basis, the polarization mechanisms in the tested material were also determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA