RESUMO
The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-"major vault protein" (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault poly(ADP-ribose) polymerase (vPARP), telomerase-associated protein-1 (TEP1), and some small untranslated RNAs are accommodated. Plenty of literature reports on the biological role(s) of this nanocomplex, as well as its involvement in diseases, mostly oncological ones. Nevertheless, much has still to be understood as to how vault participates in normal and pathological mechanisms. In this comprehensive review, current understanding of its biological roles is discussed. By different mechanisms, vault's individual components are involved in major cellular phenomena, which result in protection against cellular stresses, such as DNA-damaging agents, irradiation, hypoxia, hyperosmotic, and oxidative conditions. These diverse cellular functions are accomplished by different mechanisms, mainly gene expression reprogramming, activation of proliferative/prosurvival signaling pathways, export from the nucleus of DNA-damaging drugs, and import of specific proteins. The cellular functions of this nanocomplex may also result in the onset of pathological conditions, mainly (but not exclusively) tumor proliferation and multidrug resistance. The current understanding of its biological roles in physiological and pathological processes should also provide new hints to extend the scope of its exploitation as a nanocarrier for drug delivery.
RESUMO
A recombinant HALO-GFP fusion protein was designed and isolated to demonstrate the feasibility of controlling the number and orientation of protein ligands to be conjugated on colloidal gold nanoparticles. AuNPs functionalized with exactly one or exactly two GFP molecules exhibited fully preserved functionality of the protein. The method is very straightforward and generally provides highly bioactive nanoparticle-protein conjugates.
Assuntos
Ouro/química , Proteínas de Fluorescência Verde/química , Nanopartículas Metálicas/química , Coloides/química , Coloides/metabolismo , Ouro/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Ligantes , Estrutura MolecularRESUMO
Histone deacetylase 6 (HDAC6) is a peculiar HDAC isoform whose expression and functional alterations have been correlated with a variety of pathologies such as autoimmune disorders, neurodegenerative diseases, and cancer. It is primarily a cytoplasmic protein, and its deacetylase activity is focused mainly on nonhistone substrates such as tubulin, heat shock protein (HSP)90, Foxp3, and cortactin, to name a few. Selective inhibition of HDAC6 does not show cytotoxic effects in healthy cells, normally associated with the inhibition of Class I HDAC isoforms. Here, we describe the design and synthesis of a new class of potent and selective HDAC6 inhibitors that bear a pentaheterocyclic central core. These compounds show a remarkably low toxicity both in vitro and in vivo and are able to increase the function of regulatory T cells (Tregs) at well-tolerated concentrations, suggesting a potential clinical use for the treatment of degenerative, autoimmune diseases and for organ transplantation.
Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Ácidos Hidroxâmicos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Histonas/metabolismo , Camundongos , Isoformas de Proteínas , Baço/citologia , Linfócitos T Reguladores , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismoRESUMO
In the original publication, the 6th author's first name and the last name was inverted and incorrectly published. The correct author name is Letizia Ferella.
RESUMO
PURPOSE: Aberrant expression and activity of histone deacetylases (HDACs) sustain glioblastoma (GBM) onset and progression, and, therefore, HDAC inhibitors (HDACi) represent a promising class of anti-tumor agents. Here, we analyzed the effects of ITF2357 (givinostat), a pan-HDACi, in GBM models for its anti-neoplastic potential. METHODS: A set of GBM- and patient-derived GBM stem-cell lines was used and the ITF2357 effects on GBM oncophenotype were investigated in in vitro and in vivo xenograft models. RESULTS: ITF2357 inhibited HDAC activity and affected GBM cellular fate in a dose-dependent manner by inducing G1/S growth arrest (1-2.5 µM) or caspase-mediated cell death (≥ 2.5 µM). Chronic treatment with low doses (≤ 1 µM) induced autophagy-mediated cell death, neuronal-like phenotype, and the expression of differentiation markers, such as glial fibrillar actin protein (GFAP) and neuron-specific class III beta-tubulin (Tuj-1); this reduces neurosphere formation from patient-derived GBM stem cells. Autophagy inhibition counteracted the ITF2357-induced expression of differentiation markers in p53-expressing GBM cells. Finally, in in vivo experiments, ITF2357 efficiently passed the blood-brain barrier, so rapidly reaching high concentration in the brain tissues, and significantly affected U87MG and U251MG growth in orthotopic xenotransplanted mice. CONCLUSIONS: The present findings provide evidence of the key role played by HDACs in sustaining transformed and stem phenotype of GBM and strongly suggest that ITF2357 may have a clinical potential for the HDACi-based therapeutic strategies against GBM.
Assuntos
Carbamatos/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Histona Desacetilases/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Apoptose , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Vaults are eukaryotic ribonucleoprotein particles composed of up 78 copies of the 97â¯kDa major vault protein that assembles into a barrel-like, "nanocapsule" enclosing poly(ADP-ribose) polymerase, telomerase-associated protein-1 and small untranslated RNAs. Overall, the molecular mass of vault particles amounts to about 13â¯MDa. Although it has been implicated in several cellular functions, its physiological roles remain poorly understood. Also, the possibility to exploit it as a nanovector for drug delivery is currently being explored in several laboratories. METHODS: Using the baculovirus expression system, vaults were expressed and purified by a dialysis step using a 1â¯MDa molecular weight cutoff membrane and a subsequent size exclusion chromatography. Purity was assessed by SDS-PAGE, transmission electron microscopy and dynamic light scattering. Particle's endocytic uptake was monitored by flow cytometry and confocal microscopy. RESULTS: The purification protocol here reported is far simpler and faster than those currently available and lead to the production of authentic vault. We then demonstrated its clathrin-mediated endocytic uptake by normal fibroblast and glioblastoma, but not carcinoma cell lines. In contrast, no significant caveolin-mediated endocytosis was detected. CONCLUSIONS: These results provide the first evidence for an intrinsic propensity of the vault complex to undergo endocytic uptake cultured eukaryotic cells. GENERAL SIGNIFICANCE: The newly developed purification procedure will greatly facilitate any investigation based on the use of the vault particle as a natural nanocarrier. Its clathrin-mediated endocytic uptake observed in normal and in some tumor cell lines sheds light on its physiological role.
Assuntos
Endocitose/fisiologia , Fibroblastos/citologia , Glioblastoma/metabolismo , Nanopartículas/administração & dosagem , Partículas de Ribonucleoproteínas em Forma de Abóbada/química , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Animais , Células Cultivadas , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glioblastoma/patologia , Humanos , Nanopartículas/química , Transdução de Sinais , SpodopteraRESUMO
BACKGROUND: The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. METHODS: Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet-visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. RESULTS: In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. CONCLUSION: We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed.
Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Células 3T3-L1/efeitos dos fármacos , Animais , Antibacterianos/efeitos adversos , Antibacterianos/química , Ácido Cítrico/química , Coloides/química , Avaliação Pré-Clínica de Medicamentos/métodos , Difusão Dinâmica da Luz , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Prata/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Taninos/químicaRESUMO
Gold nanocages (AuNCs) have been shown to be a useful tool for harnessing imaging and hyperthermia therapy of cancer, thanks to their unique optical properties, low toxicity, and facile surface functionalization. Herein, we use AuNCs for selective targeting of prostate cancer cells (PC3) via specific interaction between neuropeptide Y (NPY) receptor and three different NPY analogs conjugated to AuNCs. Localized surface plasmon resonance band of the nanoconjugates was set around 800 nm, which is appropriate for in vivo applications. Long-term stability of nanoconjugates in different media was confirmed by UV-vis and DLS studies. Active NPY receptor targeting was observed by confocal microscopy showing time-dependent AuNCs cellular uptake. Activation of ERK1/2 pathway was evaluated by Western blot to confirm the receptor-mediated specific interaction with PC3. Cellular uptake kinetics were compared as a function of peptide structure. Cytotoxicity of nanoconjugates was evaluated by MTS and Annexin V assays, confirming their safety within the concentration range explored. Hyperthermia studies were carried out irradiating the cells, previously incubated with AuNCs, with a pulsed laser at 800 nm wavelength, showing a heating enhancement ranging from 6 to 35 °C above the culture temperature dependent on the irradiation power (between 1.6 and 12.7 W/cm2). Only cells treated with AuNCs underwent morphological alterations in the cytoskeleton structure upon laser irradiation, leading to membrane blebbing and loss of microvilli associated with cell migration. This effect is promising in view of possible inhibition of proliferation and invasion of cancer cells. In summary, our Au-peptide NCs proved to be an efficient theranostic nanosystem for targeted detection and activatable killing of prostate cancer cells.
Assuntos
Terapia de Alvo Molecular/métodos , Nanopartículas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral , Desenho de Fármacos , Ouro , Humanos , Lasers , Masculino , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Peptídeos/síntese química , Peptídeos/química , Neoplasias da Próstata/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Termografia/métodosRESUMO
Arnica montana (Arnica m.) is used for its purported anti-inflammatory and tissue healing actions after trauma, bruises, or tissue injuries, but its cellular and molecular mechanisms are largely unknown. This work tested Arnica m. effects on gene expression using an in vitro model of macrophages polarized towards a "wound-healing" phenotype. The monocyte-macrophage human THP-1 cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24h to Arnica m. centesimal (c) dilutions 2c, 3c, 5c, 9c, 15c or Control. Total RNA was isolated and cDNA libraries were sequenced with a NextSeq500 sequencer. Genes with significantly positive (up-regulated) or negative (down-regulated) fold changes were defined as differentially expressed genes (DEGs). A total of 20 DEGs were identified in Arnica m. 2c treated cells. Of these, 7 genes were up-regulated and 13 were down-regulated. The most significantly up-regulated function concerned 4 genes with a conserved site of epidermal growth factor-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin sulphate proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p<0.01). Protein assay confirmed a statistically significant increase of fibronectin production (p<0.05). The down-regulated transcripts derived from mitochondrial genes coding for some components of electron transport chain. The same groups of genes were also regulated by increasing dilutions of Arnica m. (3c, 5c, 9c, 15c), although with a lower effect size. We further tested the healing potential of Arnica m. 2c in a scratch model of wound closure based on the motility of bone marrow-derived macrophages and found evidence of an accelerating effect on cell migration in this system. The results of this work, taken together, provide new insights into the action of Arnica m. in tissue healing and repair, and identify extracellular matrix regulation by macrophages as a therapeutic target.
Assuntos
Anti-Inflamatórios/farmacologia , Arnica/química , Matriz Extracelular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Anti-Inflamatórios/química , Linhagem Celular , Matriz Extracelular/genética , Humanos , Macrófagos/metabolismo , Extratos Vegetais/químicaRESUMO
Tumor homing peptides (THPs) specific for a representative breast cancer cell line (MCF-7) were carefully selected basing on a phage-displayed peptide library freely available on the web, namely the "TumorHoPe: A Database of Tumor Homing Peptides". The selected THPs were synthesized and evaluated in terms of their affinity toward MCF-7 cells. Out of 5 tested THPs, 3 best-performing peptide sequences and 1 scrambled sequence were separately conjugated to spherical gold nanoparticles yielding stable nanoconjugates. THP nanoconjugates were examined for their ability to actively target MCF-7 cells in comparison to noncancerous 3T3-L1 fibroblast cells. These THP-gold nanoconjugates exhibited good selectivity and binding affinity by flow cytometry, and low cytotoxicity as assayed by cell death experiments. The uptake of targeted nanoconjugates by the breast cancer cells was confirmed by transmission electron microscopy analysis. This work demonstrates that it is possible to exploit the conjugation of short peptides selected from phage-displayed libraries to develop nanomaterials reliably endowed with tumor targeting potential irrespective of a specific knowledge of the target cell biology.
Assuntos
Neoplasias da Mama/metabolismo , Técnicas de Visualização da Superfície Celular , Portadores de Fármacos , Ouro/química , Nanopartículas Metálicas , Nanoconjugados , Biblioteca de Peptídeos , Peptídeos/metabolismo , Células 3T3-L1 , Animais , Transporte Biológico , Neoplasias da Mama/genética , Neoplasias da Mama/ultraestrutura , Composição de Medicamentos , Feminino , Humanos , Células MCF-7 , Camundongos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Peptídeos/químicaRESUMO
Many cells of the nervous system have been shown to release exosomes, a subclass of secreted vesicles of endosomal origin capable of transferring biomolecules among cells: this transfer modality represents a novel physiological form of intercellular communication between neural cells. Herein, we demonstrated that progranulin (PGRN), a protein targeted to the classical secretory pathway, is also secreted in association with exosomes by human primary fibroblasts. Moreover, we demonstrated that null mutations in the progranulin gene (GRN), a major cause of frontotemporal dementia, strongly reduce the number of released exosomes and alter their composition. In vitro GRN silencing in SHSY-5Y cells confirmed a role of PGRN in the control of exosome release. It is believed that depletion of PGRN in the brain might cause neurodegeneration in GRN-associated frontotemporal dementia. We demonstrated that, along with shortage of the circulating PGRN, GRN null mutations alter intercellular communication. Thus, a better understanding of the role played by exosomes in GRN-associated neurodegeneration is crucial for the development of novel therapies for these diseases.
Assuntos
Exossomos/metabolismo , Fibroblastos/metabolismo , Demência Frontotemporal/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Idoso , Encéfalo/patologia , Células Cultivadas , Feminino , Demência Frontotemporal/patologia , Demência Frontotemporal/terapia , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Mutação , ProgranulinasRESUMO
The interest towards extracellular vesicles (EVs) has grown exponentially over the last few years; being involved in intercellular communication and serving as reservoirs for biomarkers for tumors, they have a great potential for liquid biopsy development, possibly replacing many costly and invasive tissue biopsies. Here we propose, for the first time, the use of a Si/SiO2 interferometric, microarray platform for multiparametric intact EVs analysis combining label-free EVs mass quantitation and high sensitivity fluorescence based phenotyping. Label free interferometric measurement allows to quantify the amount of vesicles captured by printed antibodies while, on the same chip, EVs are also detected by fluorescence in a sandwich immunoassay. The proposed method simultaneously detects, quantify and phenotype intact EVs in a microarray format.
Assuntos
Vesículas Extracelulares/química , Fluorescência , Humanos , Espectrometria de Massas , NanopartículasRESUMO
Duchenne muscular dystrophy (DMD) is characterized by the loss of a functional dystrophin protein; the muscles of DMD patients progressively degenerate as a result of mechanical stress during contractions, and the condition eventually leads to premature death. By means antisense oligonucleotides (AONs), it is possible to modulate pre-mRNA splicing eliminating mutated exons and restoring dystrophin open reading frame. To overcome the hurdles in using AONs for therapeutic interventions, we exerted engineered human DMD stem cells with a lentivirus, which permanently and efficiently delivered the cloned AONs. Here we describe for the first time the exosome-mediated release of AONs from engineered human DMD CD133+ stem cells allowing the rescue of murine dystrophin expression. Finally, upon release, AONs could be internalized by host cells suggesting a potential role of exosomes acting as vesicular carriers for DMD gene therapy.
Assuntos
Distrofina/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Células-Tronco/citologia , Animais , Efeito Espectador/fisiologia , Células Cultivadas , Distrofina/biossíntese , Éxons/genética , Humanos , Camundongos , Camundongos SCID , Músculo Esquelético/patologia , Oligonucleotídeos Antissenso/genética , Splicing de RNA/genéticaRESUMO
The relationship between the positioning of ligands on the surface of nanoparticles and the structural features of nanoconjugates has been underestimated for a long time, albeit of primary importance to promote specific biological recognition at the nanoscale. In particular, it has been formerly observed that a proper molecular orientation can play a crucial role, first optimizing ligand immobilization onto the nanoparticles and, second, improving the targeting efficiency of the nanoconjugates. In this work, we present a novel strategy to afford peptide-oriented ligation using genetically modified cutinase fusion proteins, which combines the presence of a site-directed "capture" module based on an enzymatic unit and a "targeting" moiety consisting of the ligand terminal end of a genetically encoded polypeptide chain. As an example, the oriented presentation of U11 peptide, a sequence specific for the recognition of urokinase plasminogen activator receptor (uPAR), was achieved by enzyme-mediated conjugation with an irreversible inhibitor of cutinase, an alkylphosphonate p-nitrophenol ester linker, covalently bound to the surface of iron oxide nanoparticles. The targeting efficiency of the resulting protein-nanoparticle conjugates was assessed using uPAR-positive breast cancer cells exploiting confocal laser scanning microscopy and quantitative fluorescence analysis of confocal images. Ultrastructural analysis of transmission electron micrographs provided evidence of a receptor-mediated pathway of endocytosis. Our results showed that, despite the small average number of targeting peptides presented on the nanoparticles, our ligand-oriented nanoconjugates proved to be very effective in selectively binding to uPAR and in promoting the uptake in uPAR-positive cancer cells.
Assuntos
Hidrolases de Éster Carboxílico/química , Sistemas de Liberação de Medicamentos/métodos , Nanoconjugados/química , Peptídeos/química , Proteínas Recombinantes de Fusão/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Linhagem Celular Tumoral , Endocitose , Compostos Férricos/química , Humanos , Modelos Moleculares , Nanoconjugados/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Nitrofenóis/química , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/farmacologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Relação Estrutura-AtividadeRESUMO
A genetically engineered apoferritin variant consisting of 24 heavy-chain subunits (HFn) was produced to achieve a cumulative delivery of an antitumor drug, which exerts its cytotoxic action by targeting the DNA at the nucleus of human cancer cells with subcellular precision. The rationale of our approach is based on exploiting the natural arsenal of defense of cancer cells to stimulate them to recruit large amounts of HFn nanoparticles loaded with doxorubicin inside their nucleus in response to a DNA damage, which leads to a programmed cell death. After demonstrating the selectivity of HFn for representative cancer cells compared to healthy fibroblasts, doxorubicin-loaded HFn was used to treat the cancer cells. The results from confocal microscopy and DNA damage assays proved that loading of doxorubicin in HFn nanoparticles increased the nuclear delivery of the drug, thus enhancing doxorubicin efficacy. Doxorubicin-loaded HFn acts as a "Trojan Horse": HFn was internalized in cancer cells faster and more efficiently compared to free doxorubicin, then promptly translocated into the nucleus following the DNA damage caused by the partial release in the cytoplasm of encapsulated doxorubicin. This self-triggered translocation mechanism allowed the drug to be directly released in the nuclear compartment, where it exerted its toxic action. This approach was reliable and straightforward providing an antiproliferative effect with high reproducibility. The particular self-assembling nature of HFn nanocage makes it a versatile and tunable nanovector for a broad range of molecules suitable both for detection and treatment of cancer cells.
Assuntos
Antineoplásicos/administração & dosagem , Apoferritinas/administração & dosagem , Núcleo Celular/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Nanoestruturas/química , Antineoplásicos/química , Apoferritinas/química , Linhagem Celular Tumoral , Dano ao DNA , DNA Complementar/administração & dosagem , DNA Complementar/farmacologia , Escherichia coli/metabolismo , Células HeLa , Humanos , Translocação GenéticaRESUMO
BACKGROUND: Superparamagnetic iron oxide nanoparticles (MNP) offer several advantages for applications in biomedical and biotechnological research. In particular, MNP-based immobilization of enzymes allows high surface-to-volume ratio, good dispersibility, easy separation of enzymes from the reaction mixture, and reuse by applying an external magnetic field. In a biotechnological perspective, extremophilic enzymes hold great promise as they often can be used under non-conventional harsh conditions, which may result in substrate transformations that are not achievable with normal enzymes. This prompted us to investigate the effect of MNP bioconjugation on the catalytic properties of a thermostable carboxypeptidase from the hyperthermophilic archaeon Sulfolobus solfataricus (CPSso), which exhibits catalytic properties that are useful in synthetic processes. RESULTS: CPSso was immobilized onto silica-coated iron oxide nanoparticles via NiNTA-His tag site-directed conjugation. Following the immobilization, CPSso acquired distinctly higher long-term stability at room temperature compared to the free native enzyme, which, in contrast, underwent extensive inactivation after 72 h incubation, thus suggesting a potential utilization of this enzyme under low energy consumption. Moreover, CPSso conjugation also resulted in a significantly higher stability in organic solvents at 40°C, which made it possible to synthesize N-blocked amino acids in remarkably higher yields compared to those of free enzyme. CONCLUSIONS: The nanobioconjugate of CPSso immobilized on silica-coated magnetic nanoparticles exhibited enhanced stability in aqueous media at room temperature as well as in different organic solvents. The improved stability in ethanol paves the way to possible applications of immobilized CPSso, in particular as a biocatalyst for the synthesis of N-blocked amino acids. Another potential application might be amino acid racemate resolution, a critical and expensive step in chemical synthesis.
Assuntos
Carboxipeptidases/química , Enzimas Imobilizadas/química , Nanoconjugados/química , Sulfolobus solfataricus/enzimologia , Estabilidade Enzimática , Compostos Férricos/química , Dióxido de Silício/químicaRESUMO
The functionalization of colloidal nanoparticles with short peptides often fails in achieving satisfactory targeting efficiency and selectivity toward receptor-specific human cells. Here, we show that an optimized passivation of gold nanoparticle surface with a mixed self-assembled monolayer, including a targeting ligand, a fluorescent dye, and an intercalating short PEG derivative, led to a very stable, nontoxic, and efficient nanoconjugate for targeting urokinase plasminogen activator receptor-positive breast cancer cells.
Assuntos
Neoplasias da Mama/patologia , Ouro/química , Nanopartículas Metálicas/química , Terapia de Alvo Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Sequência de Aminoácidos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Desenho de Fármacos , Corantes Fluorescentes/química , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Polietilenoglicóis/química , Especificidade por SubstratoRESUMO
Understanding the behavior of multifunctional colloidal nanoparticles capable of biomolecular targeting remains a fascinating challenge in materials science with dramatic implications in view of a possible clinical translation. In several circumstances, assumptions on structure-activity relationships have failed in determining the expected responses of these complex systems in a biological environment. The present Review depicts the most recent advances about colloidal nanoparticles designed for use as tools for cellular nanobiotechnology, in particular, for the preferential transport through different target compartments, including cell membrane, cytoplasm, mitochondria, and nucleus. Besides the conventional entry mechanisms based on crossing the cellular membrane, an insight into modern physical approaches to quantitatively deliver nanomaterials inside cells, such as microinjection and electro-poration, is provided. Recent hypotheses on how the nanoparticle structure and functionalization may affect the interactions at the nano-bio interface, which in turn mediate the nanoparticle internalization routes, are highlighted. In addition, some hurdles when this small interface faces the physiological environment and how this phenomenon can turn into different unexpected responses, are discussed. Finally, possible future developments oriented to synergistically tailor biological and chemical properties of nanoconjugates to improve the control over nanoparticle transport, which could open new scenarios in the field of nanomedicine, are addressed.
Assuntos
Coloides , Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Linhagem Celular , Humanos , Mamíferos , Modelos Biológicos , NanomedicinaAssuntos
Hidrolases/química , Proteínas Imobilizadas/química , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/patologia , Peptídeos/química , Humanos , Hidrolases/metabolismo , Proteínas Imobilizadas/metabolismo , Neoplasias/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Células U937RESUMO
A bimodular genetic fusion comprising a delivery module (scFv) and a capture module (SNAP) is proposed as a novel strategy for the site-specific covalent conjugation of targeting peptides to nanoparticles. An scFv mutant selective for HER2 tumor antigen is chosen as the targeting ligand. SNAP-scFv is immobilized on magnetofluorescent nanoparticles and its targeting efficiency against HER2-positive cells is assessed by flow cytometry and immunofluorescence.