Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(7): e2311703121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315863

RESUMO

Global polls have shown that people in high-income countries generally report being more satisfied with their lives than people in low-income countries. The persistence of this correlation, and its similarity to correlations between income and life satisfaction within countries, could lead to the impression that high levels of life satisfaction can only be achieved in wealthy societies. However, global polls have typically overlooked small-scale, nonindustrialized societies, which can provide an alternative test of the consistency of this relationship. Here, we present results from a survey of 2,966 members of Indigenous Peoples and local communities among 19 globally distributed sites. We find that high average levels of life satisfaction, comparable to those of wealthy countries, are reported for numerous populations that have very low monetary incomes. Our results are consistent with the notion that human societies can support very satisfying lives for their members without necessarily requiring high degrees of monetary wealth.


Assuntos
Renda , Satisfação Pessoal , Humanos , Pobreza , Sociedades , Problemas Sociais
2.
Proc Natl Acad Sci U S A ; 120(39): e2303077120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722043

RESUMO

Cell size and cell count are adaptively regulated and intimately linked to growth and function. Yet, despite their widespread relevance, the relation between cell size and count has never been formally examined over the whole human body. Here, we compile a comprehensive dataset of cell size and count over all major cell types, with data drawn from >1,500 published sources. We consider the body of a representative male (70 kg), which allows further estimates of a female (60 kg) and 10-y-old child (32 kg). We build a hierarchical interface for the cellular organization of the body, giving easy access to data, methods, and sources (https://humancelltreemap.mis.mpg.de/). In total, we estimate total body counts of ≈36 trillion cells in the male, ≈28 trillion in the female, and ≈17 trillion in the child. These data reveal a surprising inverse relation between cell size and count, implying a trade-off between these variables, such that all cells within a given logarithmic size class contribute an equal fraction to the body's total cellular biomass. We also find that the coefficient of variation is approximately independent of mean cell size, implying the existence of cell-size regulation across cell types. Our data serve to establish a holistic quantitative framework for the cells of the human body, and highlight large-scale patterns in cell biology.


Assuntos
Contagem de Células , Criança , Humanos , Feminino , Masculino , Biomassa , Tamanho Celular , Correlação de Dados
3.
Proc Natl Acad Sci U S A ; 120(25): e2219564120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307470

RESUMO

The daily activities of ≈8 billion people occupy exactly 24 h per day, placing a strict physical limit on what changes can be achieved in the world. These activities form the basis of human behavior, and because of the global integration of societies and economies, many of these activities interact across national borders. Yet, there is no comprehensive overview of how the finite resource of time is allocated at the global scale. Here, we estimate how all humans spend their time using a generalized, physical outcome-based categorization that facilitates the integration of data from hundreds of diverse datasets. Our compilation shows that most waking hours are spent on activities intended to achieve direct outcomes for human minds and bodies (9.4 h/d), while 3.4 h/d are spent modifying our inhabited environments and the world beyond. The remaining 2.1 h/d are devoted to organizing social processes and transportation. We distinguish activities that vary strongly with GDP per capita, including the time allocated to food provision and infrastructure, vs. those that do not vary consistently, such as meals and transportation time. Globally, the time spent directly extracting materials and energy from the Earth system is small, on the order of 5 min per average human day, while the time directly dealing with waste is on the order of 1 min per day, suggesting a large potential scope to modify the allocation of time to these activities. Our results provide a baseline quantification of the temporal composition of global human life that can be expanded and applied to multiple fields of research.


Assuntos
Planeta Terra , Cabeça , Humanos , Refeições , Registros , Meios de Transporte
4.
Ambio ; 51(7): 1673-1686, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35167047

RESUMO

Small-scale fisheries have been associated with the subjective well-being of coastal communities through their links with culture, identity, and social cohesion. But although fish catches are usually considered the primary ecosystem service that benefits fishers, little is known about how subjective well-being is influenced by the fishing activity itself. Here, we applied the experience sampling method in two small-scale fisheries in Bangladesh to assess the effects of fishing on fishers' occurrence of positive and negative affect, two measures of subjective well-being. We found that fishing activities were not directly associated with increased momentary affect and that the frequency of positive affect actually decreased as the fishing trip progressed. Furthermore, although very low catches were associated with less positive affect, the highest frequency of positive affect was achieved with relatively small catches. Our results imply that the benefits provided by small-scale fisheries to the momentary subjective well-being of fishers are not strongly related to the actual catching of fish.


Assuntos
Ecossistema , Pesqueiros , Animais , Bangladesh , Conservação dos Recursos Naturais/métodos , Peixes
5.
Nat Clim Chang ; 11(11): 973-981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745348

RESUMO

Projections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth system model outputs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), to provide insights into how projected climate change will affect future ocean ecosystems. Compared with the previous generation CMIP5-forced Fish-MIP ensemble, the new ensemble ecosystem simulations show a greater decline in mean global ocean animal biomass under both strong-mitigation and high-emissions scenarios due to elevated warming, despite greater uncertainty in net primary production in the high-emissions scenario. Regional shifts in the direction of biomass changes highlight the continued and urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change to help support adaptation planning.

6.
Sci Adv ; 7(46): eabh3732, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757796

RESUMO

It has long been hypothesized that aquatic biomass is evenly distributed among logarithmic body mass size classes. Although this community structure has been observed regionally, mostly among plankton groups, its generality has never been formally tested across all marine life over the global ocean, nor have the impacts of humans on it been globally assessed. Here, we bring together data at the global scale to test the hypothesis from bacteria to whales. We find that biomass within most order of magnitude size classes is indeed remarkably constant, near 1 gigatonne (Gt) wet weight (1015 g), but bacteria and large marine mammals are markedly above and below this value, respectively. Furthermore, human impacts appear to have significantly truncated the upper one-third of the spectrum. This dramatic alteration to what is possibly life's largest-scale regularity underscores the global extent of human activities.

7.
Sci Adv ; 7(41): eabd7554, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623923

RESUMO

The biomass and biogeochemical roles of fish in the ocean are ecologically important but poorly known. Here, we use a data-constrained marine ecosystem model to provide a first-order estimate of the historical reduction of fish biomass due to fishing and the associated change in biogeochemical cycling rates. The pre-exploitation global biomass of exploited fish (10 g to 100 kg) was 3.3 ± 0.5 Gt, cycling roughly 2% of global primary production (9.4 ± 1.6 Gt year−1) and producing 10% of surface biological export. Particulate organic matter produced by exploited fish drove roughly 10% of the oxygen consumption and biological carbon storage at depth. By the 1990s, biomass and cycling rates had been reduced by nearly half, suggesting that the biogeochemical impact of fisheries has been comparable to that of anthropogenic climate change. Our results highlight the importance of developing a better mechanistic understanding of how fish alter ocean biogeochemistry.

8.
Nat Ecol Evol ; 5(11): 1536-1545, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34504317

RESUMO

The dependence of hunter-gatherers on local net primary production (NPP) to provide food played a major role in shaping long-term human population dynamics. Observations of contemporary hunter-gatherers have shown an overall correlation between population density and annual NPP but with a 1,000-fold variation in population density per unit NPP that remains unexplained. Here, we build a process-based hunter-gatherer population model embedded within a global terrestrial biosphere model, which explicitly addresses the extraction of NPP through dynamically allocated hunting and gathering activities. The emergent results reveal a strong, previously unrecognized effect of seasonality on population density via diet composition, whereby hunter-gatherers consume high fractions of meat in regions where growing seasons are short, leading to greatly reduced population density due to trophic inefficiency. This seasonal carnivory bottleneck largely explains the wide variation in population density per unit NPP and questions the prevailing usage of annual NPP as the proxy of carrying capacity for ancient humans. Our process-based approach has the potential to greatly refine our understanding of dynamical responses of ancient human populations to past environmental changes.


Assuntos
Hominidae , Caça , Animais , Dieta , Humanos , Densidade Demográfica , Dinâmica Populacional
9.
Limnol Oceanogr ; 66(1): 201-213, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33664531

RESUMO

The impact of marine animals on the iron (Fe) cycle has mostly been considered in terms of their role in supplying dissolved Fe to phytoplankton at the ocean surface. However, little attention has been paid to how the transformation of ingested food into fecal matter by animals alters the relative Fe-richness of particles, which could have consequences for Fe cycling in the water column and for the food quality of suspended and sinking particles. Here, we compile observations to show that the Fe to carbon (C) ratio (Fe:C) of fecal pellets of various marine animals is consistently enriched compared to their food, often by more than an order of magnitude. We explain this consistent enrichment by the low assimilation rates that have been measured for Fe in animals, together with the respiratory conversion of dietary organic C to excreted dissolved inorganic C. Furthermore, we calculate that this enrichment should cause animal fecal matter to constitute a major fraction of the global sinking flux of biogenic Fe, a component of the marine iron cycle that has been previously unappreciated. We also estimate that this fecal iron pump provides an important source of Fe to marine animals via coprophagy, particularly in the mesopelagic, given that fecal matter Fe:C can be many-fold higher than the Fe:C of local phytoplankton. Our results imply that the fecal iron pump is important both for global Fe cycling and for the iron nutrition of pelagic and mesopelagic communities.

10.
PLoS One ; 16(1): e0244569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33439863

RESUMO

Economic growth is often assumed to improve happiness for people in low income countries, although the association between monetary income and subjective well-being has been a subject of debate. We test this assumption by comparing three different measures of subjective well-being in very low-income communities with different levels of monetization. Contrary to expectations, all three measures of subjective well-being were very high in the least-monetized sites and comparable to those found among citizens of wealthy nations. The reported drivers of happiness shifted with increasing monetization: from enjoying experiential activities in contact with nature at the less monetized sites, to social and economic factors at the more monetized sites. Our results suggest that high levels of subjective well-being can be achieved with minimal monetization, challenging the perception that economic growth will raise life satisfaction among low income populations.


Assuntos
Felicidade , Satisfação Pessoal , Adulto , Desenvolvimento Econômico , Feminino , Humanos , Renda , Masculino , Pessoa de Meia-Idade , Fatores Socioeconômicos
11.
Ann Rev Mar Sci ; 12: 559-586, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31899673

RESUMO

Much of the global cooling during ice ages arose from changes in ocean carbon storage that lowered atmospheric CO2. A slew of mechanisms, both physical and biological, have been proposed as key drivers of these changes. Here we discuss the current understanding of these mechanisms with a focus on how they altered the theoretically defined soft-tissue and biological disequilibrium carbon storage at the peak of the last ice age. Observations and models indicate a role for Antarctic sea ice through its influence on ocean circulation patterns, but other mechanisms, including changes in biological processes, must have been important as well, and may have been coordinated through links with global air temperature. Further research is required to better quantify the contributions of the various mechanisms, and there remains great potential to use the Last Glacial Maximum and the ensuing global warming as natural experiments from which to learn about climate-driven changes in the marine ecosystem.


Assuntos
Organismos Aquáticos/metabolismo , Ciclo do Carbono , Monitoramento Ambiental/métodos , Camada de Gelo , Proteínas de Membrana Transportadoras , Água do Mar/química , Regiões Antárticas , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Ecossistema , Aquecimento Global , Temperatura
12.
Proc Natl Acad Sci U S A ; 116(43): 21616-21622, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591216

RESUMO

Scaling laws relating body mass to species characteristics are among the most universal quantitative patterns in biology. Within major taxonomic groups, the 4 key ecological variables of metabolism, abundance, growth, and mortality are often well described by power laws with exponents near 3/4 or related to that value, a commonality often attributed to biophysical constraints on metabolism. However, metabolic scaling theories remain widely debated, and the links among the 4 variables have never been formally tested across the full domain of eukaryote life, to which prevailing theory applies. Here we present datasets of unprecedented scope to examine these 4 scaling laws across all eukaryotes and link them to test whether their combinations support theoretical expectations. We find that metabolism and abundance scale with body size in a remarkably reciprocal fashion, with exponents near ±3/4 within groups, as expected from metabolic theory, but with exponents near ±1 across all groups. This reciprocal scaling supports "energetic equivalence" across eukaryotes, which hypothesizes that the partitioning of energy in space across species does not vary significantly with body size. In contrast, growth and mortality rates scale similarly both within and across groups, with exponents of ±1/4. These findings are inconsistent with a metabolic basis for growth and mortality scaling across eukaryotes. We propose that rather than limiting growth, metabolism adjusts to the needs of growth within major groups, and that growth dynamics may offer a viable theoretical basis to biological scaling.


Assuntos
Tamanho Corporal/fisiologia , Eucariotos/fisiologia , Modelos Biológicos , Animais , Metabolismo Energético/fisiologia , Crescimento e Desenvolvimento/fisiologia , Mortalidade , Densidade Demográfica
13.
Proc Natl Acad Sci U S A ; 116(26): 12907-12912, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31186360

RESUMO

While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.


Assuntos
Biomassa , Mudança Climática , Oceanos e Mares , Animais , Organismos Aquáticos/fisiologia , Pesqueiros/estatística & dados numéricos , Peixes/fisiologia , Cadeia Alimentar , Modelos Teóricos
14.
Emerg Top Life Sci ; 3(2): 233-243, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33523153

RESUMO

Climate change is a complex global issue that is driving countless shifts in the structure and function of marine ecosystems. To better understand these shifts, many processes need to be considered, yet they are often approached from incompatible perspectives. This article reviews one relatively simple, integrated perspective: the abundance-size spectrum. We introduce the topic with a brief review of some of the ways climate change is expected to impact the marine ecosystem according to complex numerical models while acknowledging the limits to understanding posed by complex models. We then review how the size spectrum offers a simple conceptual alternative, given its regular power law size-frequency distribution when viewed on sufficiently broad scales. We further explore how anticipated physical aspects of climate change might manifest themselves through changes in the elevation, slope and regularity of the size spectrum, exposing mechanistic questions about integrated ecosystem structure, as well as how organism physiology and ecological interactions respond to multiple climatic stressors. Despite its application by ecosystem modellers and fisheries scientists, the size spectrum perspective is not widely used as a tool for monitoring ecosystem adaptation to climate change, providing a major opportunity for further research.

15.
Glob Chang Biol ; 25(2): 459-472, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30408274

RESUMO

Climate change effects on marine ecosystems include impacts on primary production, ocean temperature, species distributions, and abundance at local to global scales. These changes will significantly alter marine ecosystem structure and function with associated socio-economic impacts on ecosystem services, marine fisheries, and fishery-dependent societies. Yet how these changes may play out among ocean basins over the 21st century remains unclear, with most projections coming from single ecosystem models that do not adequately capture the range of model uncertainty. We address this by using six marine ecosystem models within the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP) to analyze responses of marine animal biomass in all major ocean basins to contrasting climate change scenarios. Under a high emissions scenario (RCP8.5), total marine animal biomass declined by an ensemble mean of 15%-30% (±12%-17%) in the North and South Atlantic and Pacific, and the Indian Ocean by 2100, whereas polar ocean basins experienced a 20%-80% (±35%-200%) increase. Uncertainty and model disagreement were greatest in the Arctic and smallest in the South Pacific Ocean. Projected changes were reduced under a low (RCP2.6) emissions scenario. Under RCP2.6 and RCP8.5, biomass projections were highly correlated with changes in net primary production and negatively correlated with projected sea surface temperature increases across all ocean basins except the polar oceans. Ecosystem structure was projected to shift as animal biomass concentrated in different size-classes across ocean basins and emissions scenarios. We highlight that climate change mitigation measures could moderate the impacts on marine animal biomass by reducing biomass declines in the Pacific, Atlantic, and Indian Ocean basins. The range of individual model projections emphasizes the importance of using an ensemble approach in assessing uncertainty of future change.


Assuntos
Organismos Aquáticos/fisiologia , Biomassa , Mudança Climática , Ecossistema , Oceanos e Mares , Animais , Tamanho Corporal , Modelos Biológicos
16.
Nat Clim Chang ; 8(10): 866-872, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30416585

RESUMO

Global observations show that the ocean lost approximately 2% of its oxygen inventory over the last five decades 1-3, with important implications for marine ecosystems 4, 5. The rate of change varies with northwest Atlantic coastal waters showing a long-term drop 6, 7 that vastly outpaces the global and North Atlantic basin mean deoxygenation rates 5, 8. However, past work has been unable to resolve mechanisms of large-scale climate forcing from local processes. Here, we use hydrographic evidence to show a Labrador Current retreat is playing a key role in the deoxygenation on the northwest Atlantic shelf. A high-resolution global coupled climate-biogeochemistry model 9 reproduces the observed decline of saturation oxygen concentrations in the region, driven by a retreat of the equatorward-flowing Labrador Current and an associated shift toward more oxygen-poor subtropical waters on the shelf. The dynamical changes underlying the shift in shelf water properties are correlated with a slowdown in the simulated Atlantic Meridional Overturning Circulation 10. Our results provide strong evidence that a major, centennial-scale change of the Labrador Current is underway, and highlight the potential for ocean dynamics to impact coastal deoxygenation over the coming century.

17.
PLoS One ; 12(1): e0169763, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28103280

RESUMO

Human exploitation of marine resources is profoundly altering marine ecosystems, while climate change is expected to further impact commercially-harvested fish and other species. Although the global fishery is a highly complex system with many unpredictable aspects, the bioenergetic limits on fish production and the response of fishing effort to profit are both relatively tractable, and are sure to play important roles. Here we describe a generalized, coupled biological-economic model of the global marine fishery that represents both of these aspects in a unified framework, the BiOeconomic mArine Trophic Size-spectrum (BOATS) model. BOATS predicts fish production according to size spectra as a function of net primary production and temperature, and dynamically determines harvest spectra from the biomass density and interactive, prognostic fishing effort. Within this framework, the equilibrium fish biomass is determined by the economic forcings of catchability, ex-vessel price and cost per unit effort, while the peak harvest depends on the ecosystem parameters. Comparison of a large ensemble of idealized simulations with observational databases, focusing on historical biomass and peak harvests, allows us to narrow the range of several uncertain ecosystem parameters, rule out most parameter combinations, and select an optimal ensemble of model variants. Compared to the prior distributions, model variants with lower values of the mortality rate, trophic efficiency, and allometric constant agree better with observations. For most acceptable parameter combinations, natural mortality rates are more strongly affected by temperature than growth rates, suggesting different sensitivities of these processes to climate change. These results highlight the utility of adopting large-scale, aggregated data constraints to reduce model parameter uncertainties and to better predict the response of fisheries to human behaviour and climate change.


Assuntos
Pesqueiros/estatística & dados numéricos , Animais , Biomassa , Conservação dos Recursos Naturais , Ecossistema , Pesqueiros/economia , Peixes , Modelos Teóricos
18.
Nat Commun ; 7: 10796, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26923945

RESUMO

The burial of organic carbon in marine sediments removes carbon dioxide from the ocean-atmosphere pool, provides energy to the deep biosphere, and on geological timescales drives the oxygenation of the atmosphere. Here we quantify natural variations in the burial of organic carbon in deep-sea sediments over the last glacial cycle. Using a new data compilation of hundreds of sediment cores, we show that the accumulation rate of organic carbon in the deep sea was consistently higher (50%) during glacial maxima than during interglacials. The spatial pattern and temporal progression of the changes suggest that enhanced nutrient supply to parts of the surface ocean contributed to the glacial burial pulses, with likely additional contributions from more efficient transfer of organic matter to the deep sea and better preservation of organic matter due to reduced oxygen exposure. These results demonstrate a pronounced climate sensitivity for this global carbon cycle sink.

19.
Nature ; 530(7589): 207-10, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26840491

RESUMO

No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial-interglacial cycles. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace-metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting--at least in part--a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Camada de Gelo , Oxigênio/análise , Água do Mar/química , Regiões Antárticas , Dióxido de Carbono/história , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Respiração Celular , Clima , Poeira , Sedimentos Geológicos/química , História Antiga , Ferro/análise , Ferro/química , Oceanos e Mares , Oxirredução , Oxigênio/metabolismo , Temperatura , Movimentos da Água
20.
Proc Natl Acad Sci U S A ; 112(27): 8199-204, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26056296

RESUMO

It is widely recognized that the stoichiometry of nutrient elements in phytoplankton varies within the ocean. However, there are many conflicting mechanistic explanations for this variability, and it is often ignored in global biogeochemical models and carbon cycle simulations. Here we show that globally distributed particulate P:C varies as a linear function of ambient phosphate concentrations, whereas the N:C varies with ambient nitrate concentrations, but only when nitrate is most scarce. This observation is consistent with the adjustment of the phytoplankton community to local nutrient availability, with greater flexibility of phytoplankton P:C because P is a less abundant cellular component than N. This simple relationship is shown to predict the large-scale, long-term average composition of surface particles throughout large parts of the ocean remarkably well. The relationship implies that most of the observed variation in N:P actually arises from a greater plasticity in the cellular P:C content, relative to N:C, such that as overall macronutrient concentrations decrease, N:P rises. Although other mechanisms are certainly also relevant, this simple relationship can be applied as a first-order basis for predicting organic matter stoichiometry in large-scale biogeochemical models, as illustrated using a simple box model. The results show that including variable P:C makes atmospheric CO2 more sensitive to changes in low latitude export and ocean circulation than a fixed-stoichiometry model. In addition, variable P:C weakens the relationship between preformed phosphate and atmospheric CO2 while implying a more important role for the nitrogen cycle.


Assuntos
Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Fósforo/metabolismo , Fitoplâncton/metabolismo , Atmosfera/química , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Nitratos/metabolismo , Ciclo do Nitrogênio , Oceanos e Mares , Fosfatos/metabolismo , Fitoplâncton/crescimento & desenvolvimento , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA