Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 13(9): 724-736.e9, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36057257

RESUMO

Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead identifies compounds that match to pathways based on the phenotypic information in public cell image data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control gene queries. In prospective, discovery mode, we efficiently identified new compounds related to three query genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based approach could replace many customized labor- and resource-intensive screens and accelerate the discovery of biologically and therapeutically useful compounds.


Assuntos
Estudos Prospectivos , Linhagem Celular , Estudos Retrospectivos
2.
ACS Pharmacol Transl Sci ; 5(3): 156-168, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35311021

RESUMO

T-type voltage-gated Ca2+ channels have been implicated in many human disorders, and there has been increasing interest in developing highly selective and potent T-type Ca2+ channel modulators for potential clinical use. However, the unique biophysical properties of T-type Ca2+ channels are not conducive for developing high-throughput screening (HTS) assays to identify modulators, particularly potentiators. To illustrate, T-type Ca2+ channels are largely inactivated and unable to open to allow Ca2+ influx at -25 mV, the typical resting membrane potential of the cell lines commonly used in cellular screening assays. To address this issue, we developed cell lines that express Kir2.3 channels to hyperpolarize the membrane potential to -70 mV, thus allowing T-type channels to return to their resting state where they can be subsequently activated by membrane depolarization in the presence of extracellular KCl. Furthermore, to simplify the HTS assay and to reduce reagent cost, we stably expressed a membrane-tethered genetic calcium sensor, GCaMP6s-CAAX, that displays superior signal to the background compared to the untethered GCaMP6s or the synthetic Ca2+ sensor Fluo-4AM. Here, we describe a novel GCaMP6s-CAAX-based calcium assay utilizing a high-throughput fluorometric imaging plate reader (Molecular Devices, Sunnyvale, CA) format that can identify both activators and inhibitors of T-type Ca2+ channels. Lastly, we demonstrate the utility of this novel fluorescence-based assay to evaluate the activities of two distinct G-protein-coupled receptors, thus expanding the use of GCaMP6s-CAAX to a wide range of applications relevant for developing cellular assays in drug discovery.

3.
ACS Infect Dis ; 4(10): 1499-1507, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30058798

RESUMO

Toxoplasma gondii is an obligate intracellular parasite capable of causing severe disease due to congenital infection and in patients with compromised immune systems. Control of infection is dependent on a robust Th1 type immune response including production of interferon gamma (IFN-γ), which is essential for control. IFN-γ activates a variety of antimicrobial mechanisms in host cells, which are then able to control intracellular parasites such as T. gondii. Despite the effectiveness of these pathways in controlling acute infection, the immune system is unable to eradicate chronic infections that can persist for life. Similarly, while antibiotic treatment can control acute infection, it is unable to eliminate chronic infection. To identify compounds that would act synergistically with IFN-γ, we performed a high-throughput screen of diverse small molecule libraries to identify inhibitors of T. gondii. We identified a number of compounds that inhibited parasite growth in vitro at low µM concentrations and that demonstrated enhanced potency in the presence of a low level of IFN-γ. A subset of these compounds act by enhancing the recruitment of light chain 3 (LC3) to the parasite-containing vacuole, suggesting they work by an autophagy-related process, while others were independent of this pathway. The pattern of IFN-γ dependence was shared among the majority of analogs from 6 priority scaffolds, and analysis of structure activity relationships for one such class revealed specific stereochemistry associated with this feature. Identification of these IFN-γ-dependent leads may lead to development of improved therapeutics due to their synergistic interactions with immune responses.


Assuntos
Inibidores do Crescimento/análise , Inibidores do Crescimento/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Interferon gama/metabolismo , Toxoplasma/crescimento & desenvolvimento , Autofagia/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Inibidores do Crescimento/química , Células HeLa , Humanos , Imunidade Inata , Modelos Lineares , Luciferases/análise , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas , Estereoisomerismo , Células Th1/imunologia , Vacúolos/metabolismo
4.
Sci Transl Med ; 10(431)2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515000

RESUMO

Glycogen synthase kinase 3 (GSK3), a key regulatory kinase in the wingless-type MMTV integration site family (WNT) pathway, is a therapeutic target of interest in many diseases. Although dual GSK3α/ß inhibitors have entered clinical trials, none has successfully translated to clinical application. Mechanism-based toxicities, driven in part by the inhibition of both GSK3 paralogs and subsequent ß-catenin stabilization, are a concern in the translation of this target class because mutations and overexpression of ß-catenin are associated with many cancers. Knockdown of GSK3α or GSK3ß individually does not increase ß-catenin and offers a conceptual resolution to targeting GSK3: paralog-selective inhibition. However, inadequate chemical tools exist. The design of selective adenosine triphosphate (ATP)-competitive inhibitors poses a drug discovery challenge due to the high homology (95% identity and 100% similarity) in this binding domain. Taking advantage of an Asp133→Glu196 "switch" in their kinase hinge, we present a rational design strategy toward the discovery of paralog-selective GSK3 inhibitors. These GSK3α- and GSK3ß-selective inhibitors provide insights into GSK3 targeting in acute myeloid leukemia (AML), where GSK3α was identified as a therapeutic target using genetic approaches. The GSK3α-selective compound BRD0705 inhibits kinase function and does not stabilize ß-catenin, mitigating potential neoplastic concerns. BRD0705 induces myeloid differentiation and impairs colony formation in AML cells, with no apparent effect on normal hematopoietic cells. Moreover, BRD0705 impairs leukemia initiation and prolongs survival in AML mouse models. These studies demonstrate feasibility of paralog-selective GSK3α inhibition, offering a promising therapeutic approach in AML.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Dipeptídeos/química , Dipeptídeos/metabolismo , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Células U937 , beta Catenina/genética , beta Catenina/metabolismo
5.
ACS Chem Biol ; 13(4): 1038-1047, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29485852

RESUMO

Schizophrenia is a severe neuropsychiatric disease that lacks completely effective and safe therapies. As a polygenic disorder, genetic studies have only started to shed light on its complex etiology. To date, the positive symptoms of schizophrenia are well-managed by antipsychotic drugs, which primarily target the dopamine D2 receptor (D2R). However, these antipsychotics are often accompanied by severe side effects, including motoric symptoms. At D2R, antipsychotic drugs antagonize both G-protein dependent (Gαi/o) signaling and G-protein independent (ß-arrestin) signaling. However, the relevant contributions of the distinct D2R signaling pathways to antipsychotic efficacy and on-target side effects (motoric) are still incompletely understood. Recent evidence from mouse genetic and pharmacological studies point to ß-arrestin signaling as the major driver of antipsychotic efficacy and suggest that a ß-arrestin biased D2R antagonist could achieve an additional level of selectivity at D2R, increasing the therapeutic index of next generation antipsychotics. Here, we characterize BRD5814, a highly brain penetrant ß-arrestin biased D2R antagonist. BRD5814 demonstrated good target engagement via PET imaging, achieving efficacy in an amphetamine-induced hyperlocomotion mouse model with strongly reduced motoric side effects in a rotarod performance test. This proof of concept study opens the possibility for the development of a new generation of pathway selective antipsychotics at D2R with reduced side effect profiles for the treatment of schizophrenia.


Assuntos
Antipsicóticos/uso terapêutico , Receptores de Dopamina D2/efeitos dos fármacos , beta-Arrestinas/metabolismo , Animais , Diagnóstico por Imagem/métodos , Proteínas de Ligação ao GTP/antagonistas & inibidores , Humanos , Locomoção/efeitos dos fármacos , Camundongos , Esquizofrenia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , beta-Arrestinas/antagonistas & inibidores
6.
Bioorg Med Chem ; 24(18): 4008-4015, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27377864

RESUMO

The structure-activity and structure-kinetic relationships of a series of novel and selective ortho-aminoanilide inhibitors of histone deacetylases (HDACs) 1 and 2 are described. Different kinetic and thermodynamic selectivity profiles were obtained by varying the moiety occupying an 11Å channel leading to the Zn(2+) catalytic pocket of HDACs 1 and 2, two paralogs with a high degree of structural similarity. The design of these novel inhibitors was informed by two ligand-bound crystal structures of truncated hHDAC2. BRD4884 and BRD7232 possess kinetic selectivity for HDAC1 versus HDAC2. We demonstrate that the binding kinetics of HDAC inhibitors can be tuned for individual isoforms in order to modulate target residence time while retaining functional activity and increased histone H4K12 and H3K9 acetylation in primary mouse neuronal cell culture assays. These chromatin modifiers, with tuned binding kinetic profiles, can be used to define the relation between target engagement requirements and the pharmacodynamic response of HDACs in different disease applications.


Assuntos
Anilidas/química , Anilidas/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Acetilação/efeitos dos fármacos , Aminação , Animais , Células Cultivadas , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Humanos , Cinética , Camundongos , Simulação de Acoplamento Molecular
7.
ACS Chem Biol ; 11(7): 1952-63, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27128528

RESUMO

The mood stabilizer lithium, the first-line treatment for bipolar disorder, is hypothesized to exert its effects through direct inhibition of glycogen synthase kinase 3 (GSK3) and indirectly by increasing GSK3's inhibitory serine phosphorylation. GSK3 comprises two highly similar paralogs, GSK3α and GSK3ß, which are key regulatory kinases in the canonical Wnt pathway. GSK3 stands as a nodal target within this pathway and is an attractive therapeutic target for multiple indications. Despite being an active field of research for the past 20 years, many GSK3 inhibitors demonstrate either poor to moderate selectivity versus the broader human kinome or physicochemical properties unsuitable for use in in vitro systems or in vivo models. A nonconventional analysis of data from a GSK3ß inhibitor high-throughput screening campaign, which excluded known GSK3 inhibitor chemotypes, led to the discovery of a novel pyrazolo-tetrahydroquinolinone scaffold with unparalleled kinome-wide selectivity for the GSK3 kinases. Taking advantage of an uncommon tridentate interaction with the hinge region of GSK3, we developed highly selective and potent GSK3 inhibitors, BRD1652 and BRD0209, which demonstrated in vivo efficacy in a dopaminergic signaling paradigm modeling mood-related disorders. These new chemical probes open the way for exclusive analyses of the function of GSK3 kinases in multiple signaling pathways involved in many prevalent disorders.


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Desenho de Fármacos , Humanos
8.
ACS Chem Biol ; 11(2): 363-74, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26640968

RESUMO

Modulation of histone deacetylase (HDAC) activity has been implicated as a potential therapeutic strategy for multiple diseases. However, it has been difficult to dissect the role of individual HDACs due to a lack of selective small-molecule inhibitors. Here, we report the synthesis of a series of highly potent and isoform-selective class I HDAC inhibitors, rationally designed by exploiting minimal structural changes to the clinically experienced HDAC inhibitor CI-994. We used this toolkit of isochemogenic or chemically matched inhibitors to probe the role of class I HDACs in ß-cell pathobiology and demonstrate for the first time that selective inhibition of an individual HDAC isoform retains beneficial biological activity and mitigates mechanism-based toxicities. The highly selective HDAC3 inhibitor BRD3308 suppressed pancreatic ß-cell apoptosis induced by inflammatory cytokines, as expected, or now glucolipotoxic stress, and increased functional insulin release. In addition, BRD3308 had no effect on human megakaryocyte differentiation, while inhibitors of HDAC1 and 2 were toxic. Our findings demonstrate that the selective inhibition of HDAC3 represents a potential path forward as a therapy to protect pancreatic ß-cells from inflammatory cytokines and nutrient overload in diabetes.


Assuntos
Citoproteção/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacocinética , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratos
9.
Chem Biol ; 22(4): 439-445, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25892200

RESUMO

Histone deacetylase (HDAC) inhibitors have shown enormous promise for treating various disease states, presumably due to their ability to modulate acetylation of histone and non-histone proteins. Many of these inhibitors contain functional groups capable of strongly chelating metal ions. We demonstrate that several members of one such class of compounds, the hydroxamate-based HDAC inhibitors, can protect neurons from oxidative stress via an HDAC-independent mechanism. This previously unappreciated antioxidant mechanism involves the in situ formation of hydroxamate-iron complexes that catalyze the decomposition of hydrogen peroxide in a manner reminiscent of catalase. We demonstrate that while many hydroxamate-containing HDAC inhibitors display a propensity for binding iron, only a subset form active catalase mimetics capable of protecting neurons from exogenous H2O2. In addition to their impact on stroke and neurodegenerative disease research, these results highlight the possibility that HDAC-independent factors might play a role in the therapeutic effects of hydroxamate-based HDAC inhibitors.


Assuntos
Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Ácidos Hidroxâmicos/química , Neurônios/metabolismo , Animais , Catalase/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/toxicidade , Ácidos Hidroxâmicos/farmacologia , Ferro/química , Camundongos , Neurônios/citologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
10.
ACS Chem Biol ; 9(10): 2210-6, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25089360

RESUMO

Despite being extensively characterized structurally and biochemically, the functional role of histone deacetylase 8 (HDAC8) has remained largely obscure due in part to a lack of known cellular substrates. Herein, we describe an unbiased approach using chemical tools in conjunction with sophisticated proteomics methods to identify novel non-histone nuclear substrates of HDAC8, including the tumor suppressor ARID1A. These newly discovered substrates of HDAC8 are involved in diverse biological processes including mitosis, transcription, chromatin remodeling, and RNA splicing and may help guide therapeutic strategies that target the function of HDAC8.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Proteínas de Ligação a DNA , Humanos , Proteômica , Proteínas Repressoras/antagonistas & inibidores , Especificidade por Substrato
11.
Epigenetics ; 8(7): 756-64, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23803584

RESUMO

[ (3)H]CI-994, a radioactive isotopologue of the benzamide CI-994, a class I histone deacetylase inhibitor (HDACi), was evaluated as an autoradiography probe for ex vivo labeling and localizing of class I HDAC (isoforms 1-3) in the rodent brain. After protocol optimization, up to 80% of total binding was attributed to specific binding. Notably, like other benzamide HDACi, [ (3)H]CI-994 exhibits slow binding kinetics when measured in vitro with isolated enzymes and ex vivo when used for autoradiographic mapping of HDAC1-3 density. The regional distribution and density of HDAC1-3 was determined through a series of saturation and kinetics experiments. The binding properties of [ (3)H]CI-994 to HDAC1-3 were characterized and the data were used to determine the regional Bmax of the target proteins. Kd values, determined from slice autoradiography, were between 9.17 and 15.6 nM. The HDAC1-3 density (Bmax), averaged over whole brain sections, was of 12.9 picomol · mg(-1) protein. The highest HDAC1-3 density was found in the cerebellum, followed by hippocampus and cortex. Moderate to low receptor density was found in striatum, hypothalamus and thalamus. These data were correlated with semi-quantitative measures of each HDAC isoform using western blot analysis and it was determined that autoradiographic images most likely represent the sum of HDAC1, HDAC2, and HDAC3 protein density. In competition experiments, [ (3)H]CI-994 binding can be dose-dependently blocked with other HDAC inhibitors, including suberoylanilide hydroxamic acid (SAHA). In summary, we have developed the first known autoradiography tool for imaging class I HDAC enzymes. Although validated in the CNS, [ (3)H]CI-994 will be applicable and beneficial to other target tissues and can be used to evaluate HDAC inhibition in tissues for novel therapies being developed. [ (3)H]CI-994 is now an enabling imaging tool to study the relationship between diseases and epigenetic regulation.


Assuntos
Autorradiografia/métodos , Histona Desacetilases/metabolismo , Imagem Molecular/métodos , Trítio/metabolismo , Animais , Benzamidas , Ligação Competitiva , Western Blotting , Encéfalo/metabolismo , Cinética , Ligantes , Camundongos , Fenilenodiaminas/química , Fenilenodiaminas/metabolismo , Ligação Proteica , Ratos , Reprodutibilidade dos Testes
12.
J Med Chem ; 56(11): 4816-20, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23672185

RESUMO

We disclose the first small molecule histone deacetylase (HDAC) inhibitor (3, BRD73954) capable of potently and selectively inhibiting both HDAC6 and HDAC8 despite the fact that these isoforms belong to distinct phylogenetic classes within the HDAC family of enzymes. Our data demonstrate that meta substituents of phenyl hydroxamic acids are readily accommodated upon binding to HDAC6 and, furthermore, are necessary for the potent inhibition of HDAC8.


Assuntos
Antineoplásicos/síntese química , Inibidores de Histona Desacetilases/síntese química , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/síntese química , Ácidos Ftálicos/síntese química , Proteínas Repressoras/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Células HeLa , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Simulação de Acoplamento Molecular , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Ligação Proteica , Proteínas Repressoras/química , Relação Estrutura-Atividade
13.
J Med Chem ; 56(4): 1772-6, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368884

RESUMO

Hydroxamic acids were designed, synthesized, and evaluated for their ability to selectively inhibit human histone deacetylase 6 (HDAC6). Several inhibitors, including compound 14 (BRD9757), exhibited excellent potency and selectivity despite the absence of a surface-binding motif. The binding of these highly efficient ligands for HDAC6 is rationalized via structure-activity relationships. These results demonstrate that high selectivity and potent inhibition of HDAC6 can be achieved through careful choice of linker element only.


Assuntos
Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Ácidos Hidroxâmicos/química , Células HeLa , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacologia , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Mimetismo Molecular , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA