Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(8): 2292-2305, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35598958

RESUMO

Pathogenic diseases frequently occur in drought-stressed trees. However, their contribution to the process of drought-induced mortality is poorly understood. We combined drought and stem inoculation treatments to study the physiological processes leading to drought-induced mortality in Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) saplings infected with Heterobasidion annosum s.s. We analysed the saplings' water status, gas exchange, nonstructural carbohydrates (NSCs) and defence responses, and how they related to mortality. Saplings were followed for two growing seasons, including an artificially induced 3-month dormancy period. The combined drought and pathogen treatment significantly increased spruce mortality; however, no interaction between these stressors was observed in pine, although individually each stressor caused mortality. Our results suggest that pathogen infection decreased carbon reserves in spruce, reducing the capacity of saplings to cope with drought, resulting in increased mortality rates. Defoliation, relative water content and the starch concentration of needles were predictors of mortality in both species under drought and pathogen infection. Infection and drought stress create conflicting needs for carbon to compartmentalize the pathogen and to avoid turgor loss, respectively. Heterobasidion annosum reduces the functional sapwood area and shifts NSC allocation patterns, reducing the capacity of trees to cope with drought.


Assuntos
Picea , Pinus sylvestris , Pinus , Basidiomycota , Carbono , Secas , Picea/fisiologia , Pinus sylvestris/fisiologia , Folhas de Planta/fisiologia , Árvores , Água/fisiologia
2.
Proc Natl Acad Sci U S A ; 117(47): 29720-29729, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33139533

RESUMO

Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern postdrought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.


Assuntos
Secas/mortalidade , Florestas , Biodiversidade , Mudança Climática/mortalidade , Ecossistema , Especificidade da Espécie , Árvores/fisiologia
3.
Front Plant Sci ; 10: 701, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231404

RESUMO

Trait-based approaches are increasingly used to investigate plant strategies for resource acquisition, growth, or competition between individual organisms or across species. However, the characterization of responses to environmental stimuli by fine-root systems of trees at the trait level is rather limited, particularly regarding the timing and degree of plasticity of the traits involved. These aspects become especially relevant under current climate-driven shifts in environmental conditions. In the present study, we examined the responses of the fine roots of Scots pines to increased soil water availability from long-term irrigation starting in the year 2003. The Scots pine forest is situated in a water-limited region in the central European Alps where increased tree mortality has been observed over the last two decades. The fine-root traits investigated include root system traits, root dynamic traits, architectural traits, and morphological traits. A first survey of fine-root traits in 2005 using ingrowth cores did not reveal any trait-based responses resulting from the irrigation treatment over a three-year period. Fine-root biomass, as periodically recorded by coring the topsoil from 2003 to 2016, showed a significant increase compared to the non-irrigated controls between three and nine years after the start of treatment. Overall, a maximum biomass increase due to the irrigation treatment was recorded in 2016 with about 80% higher biomass compared to controls. The analysis of fine-root traits revealed that irrigation significantly increased biomass, length, and production, but did not alter morphological and architectural traits, such as diameter, frequency of tips, specific root length (SRL), and root tissue density (RTD). In contrast, clear significant differences were found for all traits except for length when comparing the two root sampling methods, namely, ingrowth cores and soil coring. However, there were no interactions between the irrigation treatment and the sampling methods used and, therefore, the methods used did not affect the documented patterns, just the actual measured trait values.

4.
Ann Bot ; 121(7): 1383-1396, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29893878

RESUMO

Background and Aims: The relationship between plant carbon economy and drought responses of co-occurring woody species can be assessed by comparing carbohydrate (C) dynamics following drought and rain periods, relating these dynamics to species' functional traits. We studied nine woody species coexisting in a continental Mediterranean shrubland that experienced severe drought effects followed by rain. Methods: We measured total non-structural carbohydrates (NSC) and soluble sugars (SS) in roots and stems during drought and after an autumn rain pulse in plants exhibiting leaf loss and in undefoliated ones. We explored whether their dynamics were related to foliage recovery and functional traits (height [H], specific leaf area [SLA], wood density [WD]). Key Results: During drought, NSC concentrations were overall lower in stems and roots of plants experiencing leaf loss, while SS decreases were smaller. Roots had higher NSC concentrations than stems. After the rain, NSC concentrations continued to decrease, while SS increased. Green foliage recovered after rain, particularly in plants previously experiencing higher leaf loss, independently of NSC concentrations during drought. Species with lower WD tended to have more SS during drought and lower SS increases after rain. In low-WD species, plants with severe leaf loss had lower NSC relative to undefoliated ones. No significant relationship was found between H or SLA and C content or dynamics. Conclusions: Our community-level study reveals that, while responses were species-specific, C stocks overall diminished in plants affected by prolonged drought and did not increase after a pulse of seasonal rain. Dynamics were faster for SS than NSC. We found limited depletion of SS, consistent with their role in basal metabolic, transport and signalling functions. In a scenario of increased drought under climate change, NSC stocks in woody plants are expected to decrease differentially in coexisting species, with potential implications for their adaptive abilities and community dynamics.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Plantas/metabolismo , Carboidratos/análise , Desidratação , Ecossistema , Folhas de Planta/química , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/química , Caules de Planta/química , Plantas/química , Madeira/química
5.
ISME J ; 12(4): 1061-1071, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29476139

RESUMO

Changes in frequency and amplitude of rain events, that is, precipitation patterns, result in different water conditions with soil depth, and likely affect plant growth and shape plant and soil microbial activity. Here, we used 18O stable isotope probing (SIP) to investigate bacterial and fungal communities that actively grew or not upon rewetting, at three different depths in soil mesocosms previously subjected to frequent or infrequent watering for 12 weeks (equal total water input). Phylogenetic marker genes for bacteria and fungi were sequenced after rewetting, and plant-soil microbial coupling documented by plant 13C-CO2 labeling. Soil depth, rather than precipitation pattern, was most influential in shaping microbial response to rewetting, and had differential effects on active and inactive bacterial and fungal communities. After rewetting, active bacterial communities were less rich, more even and phylogenetically related than the inactive, and reactivated throughout the soil profile. Active fungal communities after rewetting were less abundant and rich than the inactive. The coupling between plants and soil microbes decreased under infrequent watering in the top soil layer. We suggest that differences in fungal and bacterial abundance and relative activity could result in large effects on subsequent soil biogeochemical cycling.


Assuntos
Bactérias/classificação , Fungos/classificação , Microbiologia do Solo , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Filogenia , Desenvolvimento Vegetal , Chuva , Solo/química
6.
Nat Ecol Evol ; 1(9): 1285-1291, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29046541

RESUMO

Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.


Assuntos
Carbono/deficiência , Secas , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Xilema/fisiologia , Mudança Climática , Cycadopsida/fisiologia , Magnoliopsida/fisiologia , Dinâmica Populacional , Estresse Fisiológico
7.
Sci Rep ; 7(1): 8392, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814757

RESUMO

Models predict that vertical gradients of foliar nitrogen (N) allocation, increasing from bottom to top of plant canopies, emerge as a plastic response to optimise N utilisation for carbon assimilation. While this mechanism has been well documented in monocultures, its relevance for mixed stands of varying species richness remains poorly understood. We used 21 naturally assembled grassland communities to analyse the gradients of N in the canopy using N allocation coefficients (K N ) estimated from the distribution of N per foliar surface area (KN-F) and ground surface area (KN-G). We tested whether: 1) increasing plant species richness leads to more pronounced N gradients as indicated by higher K N -values, 2) K N is a good predictor of instantaneous net ecosystem CO2 exchange and 3) functional diversity of leaf N concentration as estimated by Rao's Q quadratic diversity metric is a good proxy of K N . Our results show a negative (for KN-G) or no relationship (for KN-F) between species richness and canopy N distribution, but emphasize a link (positive relationship) between more foliar N per ground surface area in the upper layers of the canopy (i.e. under higher KN-G) and ecosystem CO2 uptake. Rao's Q was not a good proxy for either K N .

8.
Plant Cell Environ ; 40(9): 1711-1724, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28432768

RESUMO

Carbon reserves are important for maintaining tree function during and after stress. Increasing tree mortality driven by drought globally has renewed the interest in how plants regulate allocation of recently fixed C to reserve formation. Three-year-old seedlings of two species (Tilia platyphyllos and Pinus sylvestris) were exposed to two intensities of experimental drought during ~10 weeks, and 13 C pulse labelling was subsequently applied with rewetting. Tracking the 13 C label across different organs and C compounds (soluble sugars, starch, myo-inositol, lipids and cellulose), together with the monitoring of gas exchange and C mass balances over time, allowed for the identification of variations in C allocation priorities and tree C balances that are associated with drought effects and subsequent drought release. The results demonstrate that soluble sugars accumulated in P. sylvestris under drought conditions independently of growth trends; thus, non-structural carbohydrates (NSC) formation cannot be simply considered a passive overflow process in this species. Once drought ceased, C allocation to storage was still prioritized at the expense of growth, which suggested the presence of 'drought memory effects', possibly to ensure future growth and survival. On the contrary, NSC and growth dynamics in T. platyphyllos were consistent with a passive (overflow) view of NSC formation.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Secas , Pinus sylvestris/metabolismo , Tilia/metabolismo , Biomassa , Metabolismo dos Carboidratos , Isótopos de Carbono , Gases/metabolismo , Meia-Vida , Marcação por Isótopo , Solo/química , Solubilidade , Especificidade da Espécie , Fatores de Tempo , Água/química
9.
Tree Physiol ; 35(11): 1146-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26423132

RESUMO

Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Carboidratos/química , Laboratórios/normas , Árvores/química , Técnicas de Química Analítica , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Especificidade da Espécie , Amido , Árvores/metabolismo
10.
Front Plant Sci ; 4: 400, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130568

RESUMO

Stored non-structural carbohydrates (NSC) have been proposed as a key determinant of drought resistance in plants. However, the evidence for this role is controversial, as it comes mostly from observational, short-term studies. Here, we take advantage of a long-term experimental throughfall reduction to elucidate the response of NSC to increased drought 14 years after the beginning of the treatment in three Mediterranean resprouter trees (Quercus ilex L., Arbutus unedo L. and Phillyrea latifolia L.). In addition, we selected 20 Q. ilex individuals outside the experimental plots to directly assess the relationship between defoliation and NSC at the individual level. We measured the seasonal course of NSC concentrations in leaves, branches and lignotuber in late winter, late spring, summer, and autumn 2012. Total concentrations of NSC were highest in the lignotuber for all species. In the long-term drought experiment we found significant depletion in concentrations of total NSC in treatment plots only in the lignotuber of A. unedo. At the same time, A. unedo was the only species showing a significant reduction in BAI under the drought treatment during the 14 years of the experiment. By contrast, Q. ilex just reduced stem growth only during the first 4 years of treatment and P. latifolia remained unaffected over the whole study period. However, we found a clear association between the concentrations of NSC and defoliation in Q. ilex individuals sampled outside the experimental plots, with lower total concentrations of NSC and lower proportion of starch in defoliated individuals. Taken together, our results suggest that stabilizing processes, probably at the stand level, may have been operating in the long-term to mitigate any impact of drought on NSC levels, and highlight the necessity to incorporate long-term experimental studies of plant responses to drought.

11.
New Phytol ; 200(2): 388-401, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23594415

RESUMO

Drought-induced defoliation has recently been associated with the depletion of carbon reserves and increased mortality risk in Scots pine (Pinus sylvestris). We hypothesize that defoliated individuals are more sensitive to drought, implying that potentially higher gas exchange (per unit of leaf area) during wet periods may not compensate for their reduced photosynthetic area. We measured sap flow, needle water potentials and whole-tree hydraulic conductance to analyse the drought responses of co-occurring defoliated and nondefoliated Scots pines in northeast Spain during typical (2010) and extreme (2011) drought conditions. Defoliated Scots pines showed higher sap flow per unit leaf area during spring, but were more sensitive to summer drought, relative to nondefoliated pines. This pattern was associated with a steeper decline in soil-to-leaf hydraulic conductance with drought and an enhanced sensitivity of canopy conductance to soil water availability. Near-homeostasis in midday water potentials was observed across years and defoliation classes, with minimum values of -2.5 MPa. Enhanced sensitivity to drought and prolonged periods of near-zero gas exchange were consistent with low levels of carbohydrate reserves in defoliated trees. Our results support the critical links between defoliation, water and carbon availability, and their key roles in determining tree survival and recovery under drought.


Assuntos
Carbono/metabolismo , Pinus sylvestris/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia , Secas , Modelos Teóricos , Fotossíntese/fisiologia , Pinus sylvestris/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Estações do Ano , Solo , Espanha , Árvores , Pressão de Vapor , Madeira/metabolismo , Madeira/fisiologia
12.
Tree Physiol ; 32(4): 478-89, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22499595

RESUMO

Severe droughts may increase physiological stress on long-lived woody vegetation, occasionally leading to rapid defoliation and progressive increase in mortality of overstorey trees. Over the last few years, episodes of drought-induced tree dieback have been documented in a variety of woodlands and forests around the world. However, the factors determining tree survival and subsequent recovery are still poorly understood, especially in resprouter species. We have studied the effects of a single drought episode on crown condition in a holm oak (Quercus ilex L.) forest located in NE Spain 7 years after the drought event. Generalized linear models were used to study the environmental correlates of forest crown condition 7 years after the drought event. Additionally, we evaluated the association between crown condition and the carbon and nutrient reserves stored in lignotubers 7 years after the drought. Our study reveals the multifactor nature of a drought-driven forest dieback in which soil depth and the characteristics of individual trees, particularly their number of stems, determined a complex spatial pattern of tree-level responses. This dieback was associated with a depletion of the carbon reserves in lignotubers 7 years after the episode, representing a reduction of up to 60% in highly drought-damaged trees. Interestingly, in the absence of new acute droughts, successive surveys in 2007-11 showed a direct association between carbon reserves depletion and further deterioration of crown condition. More frequent droughts, as predicted by climate change projections, may lead to a progressive depletion of carbon reserves and to a loss of resilience in Mediterranean resprouter species.


Assuntos
Adaptação Fisiológica , Carbono/metabolismo , Secas , Folhas de Planta/fisiologia , Quercus/fisiologia , Estresse Fisiológico , Água , Meio Ambiente , Região do Mediterrâneo , Caules de Planta/fisiologia , Tubérculos/fisiologia , Solo , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA