Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 208: 108460, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447422

RESUMO

Biofortification aims to increase selenium (Se) concentration and bioavailability in edible parts of crops such as wheat (Triticum aestivum L.), resulting in increased concentration of Se in plants and/or soil. Higher Se concentrations can disturb protein structure and consequently influence glutathione (GSH) metabolism in plants which can affect antioxidative and other detoxification pathways. The aim of this study was to elucidate the impact of five different concentrations of selenate and selenite (0.4, 4, 20, 40 and 400 mg kg-1) on the ascorbate-glutathione cycle in wheat shoots and roots and to determine biochemical and molecular tissue-specific responses. Content of investigated metabolites, activities of detoxification enzymes and expression of their genes depended both on the chemical form and concentration of the applied Se, as well as on the type of plant tissue. The most pronounced changes in the expression level of genes involved in GSH metabolism were visible in wheat shoots at the highest concentrations of both forms of Se. Obtained results can serve as a basis for further research on Se toxicity and detoxification mechanisms in wheat. New insights into the Se impact on GSH metabolism could contribute to the further development of biofortification strategies.


Assuntos
Selênio , Selênio/farmacologia , Selênio/metabolismo , Triticum/metabolismo , Plântula/metabolismo , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo , Glutationa/metabolismo
2.
Data Brief ; 53: 110105, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375146

RESUMO

Vehicle detection is a very important aspect of computer vision application to aerial and satellite imagery, facilitating activities such as instance counting, velocity estimation, traffic predictions, etc. The feasibility of accurate vehicle detection often depends on limited training datasets, requiring a lot of manual work in collection and annotation tasks. Furthermore, there are no known publicly available datasets. Our aim was to construct a pipeline for synthetic dataset generation from aerial imagery and 3D models in Blender software. The dataset generation pipeline consists of seven steps and results in a wished number of images with bounding boxes in YOLO and coco formats. This synthetic dataset has been produced following the steps described in this pipeline. It consists of 5000 2048 × 2048 images with cars inserted into the roads and highways at the images without cars from all over the world. We believe that this dataset and the respective pipeline might be of great importance for vehicle detection, facilitating the customizability of the models to specific needs and context.

3.
J Anim Sci Biotechnol ; 14(1): 142, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932811

RESUMO

BACKGROUND: The importance of sheep breeding in the Mediterranean part of the eastern Adriatic has a long tradition since its arrival during the Neolithic migrations. Sheep production system is extensive and generally carried out in traditional systems without intensive systematic breeding programmes for high uniform trait production (carcass, wool and milk yield). Therefore, eight indigenous Croatian sheep breeds from eastern Adriatic treated here as metapopulation (EAS), are generally considered as multipurpose breeds (milk, meat and wool), not specialised for a particular type of production, but known for their robustness and resistance to certain environmental conditions. Our objective was to identify genomic regions and genes that exhibit patterns of positive selection signatures, decipher their biological and productive functionality, and provide a "genomic" characterization of EAS adaptation and determine its production type. RESULTS: We identified positive selection signatures in EAS using several methods based on reduced local variation, linkage disequilibrium and site frequency spectrum (eROHi, iHS, nSL and CLR). Our analyses identified numerous genomic regions and genes (e.g., desmosomal cadherin and desmoglein gene families) associated with environmental adaptation and economically important traits. Most candidate genes were related to meat/production and health/immune response traits, while some of the candidate genes discovered were important for domestication and evolutionary processes (e.g., HOXa gene family and FSIP2). These results were also confirmed by GO and QTL enrichment analysis. CONCLUSIONS: Our results contribute to a better understanding of the unique adaptive genetic architecture of EAS and define its productive type, ultimately providing a new opportunity for future breeding programmes. At the same time, the numerous genes identified will improve our understanding of ruminant (sheep) robustness and resistance in the harsh and specific Mediterranean environment.

4.
Plants (Basel) ; 12(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836193

RESUMO

Carotenoids are an abundant group of lipid-soluble antioxidants in maize kernels. Maize is a key target crop for carotenoid biofortification focused on using conventional plant breeding in native germplasm of temperate areas traced back partially to traditional cultivars (landraces). In this study, the objectives were to determine the variability of lutein (LUT), zeaxanthin (ZEA), α-cryptoxanthin (αCX), ß-cryptoxanthin (ßCX), α-carotene (αC), and ß-carotene (ßC) contents in the grain of 88 accessions of temperate maize from the Croatian genebank, and to evaluate the relationships among the contents of different carotenoids as well as the relationships between kernel color and hardness and carotenoid content. Highly significant variability among the 88 accessions was detected for all carotenoids. On average, the most abundant carotenoid was LUT with 13.2 µg g-1 followed by ZEA with 6.8 µg g-1 dry matter. A Principal Component Analysis revealed a clear distinction between α- (LUT, αCX, and αC) and ß-branch (ZEA; ßCX, and ßC) carotenoids. ß-branch carotenoids were positively correlated with kernel color, and weakly positively associated with kernel hardness. Our results suggest that some genebank accessions with a certain percentage of native germplasm may be a good source of carotenoid biofortification in Southeast Europe. However, due to the lack of association between LUT and ZEA, the breeding process could be cumbersome.

5.
Data Brief ; 50: 109625, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823068

RESUMO

Nitrogen (N) is one of the key inputs in maize production applied in the form of fertilizers. Nitrogen deficiency during the vegetation period leads to lower yields since N is utilized in proteins and enzymes that enable important biochemical processes such as photosynthesis. Nitrogen deficiency leads to specific symptoms that eventually become visible to the naked eye during vegetation. Our hypothesis was that N deficiency can be detected from maize RGB images in parametric process such as a deep neural network. The aim of the reported dataset is to optimize the usage of N in the farmer's fields and accordingly, reduce its environmental footprint. This dataset contains 1200 images of maize canopy from field trials, annotated by an expert from an agricultural institution. The field trials included three levels of N fertilization: N0 without N fertilization, N75 with 75 kg of added N fertilizer, and NFull with 136 kg of added N fertilizer. For each fertilizer level, 400 plots were created with 238 different maize genotypes, resulting in a total of 1200 plots. Images were taken with a tripod mounted DSLR camera, aperture priority set to f/8 and sensor sensitivity set to ISO400. Images were taken at a 45° angle to each plot. This dataset can be useful to both researchers, data scientists and agronomists, especially in the context of emerging technologies in precision agriculture, such as robotics, 5G networks and unmanned aerial vehicle (UAV). The dataset is one of the first publicly accessible datasets of maize canopy images under different N fertilization levels and represents a valuable public resource for development of machine learning models for in-season detection of N deficiency in maize.

6.
BMC Plant Biol ; 23(1): 315, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316827

RESUMO

Southeast Europe (SEE) is a very important maize-growing region, comparable to the Corn belt region of the United States, with similar dent germplasm (dent by dent hybrids). Historically, this region has undergone several genetic material swaps, following the trends in the US, with one of the most significant swaps related to US aid programs after WWII. The imported accessions used to make double-cross hybrids were also mixed with previously adapted germplasm originating from several more distant OPVs, supporting the transition to single cross-breeding. Many of these materials were deposited at the Maize Gene Bank of the Maize Research Institute Zemun Polje (MRIZP) between the 1960s and 1980s. A part of this Gene Bank (572 inbreds) was genotyped with Affymetrix Axiom Maize Genotyping Array with 616,201 polymorphic variants. Data were merged with two other genotyping datasets with mostly European flint (TUM dataset) and dent (DROPS dataset) germplasm. The final pan-European dataset consisted of 974 inbreds and 460,243 markers. Admixture analysis showed seven ancestral populations representing European flint, B73/B14, Lancaster, B37, Wf9/Oh07, A374, and Iodent pools. Subpanel of inbreds with SEE origin showed a lack of Iodent germplasm, marking its historical context. Several signatures of selection were identified at chromosomes 1, 3, 6, 7, 8, 9, and 10. The regions under selection were mined for protein-coding genes and were used for gene ontology (GO) analysis, showing a highly significant overrepresentation of genes involved in response to stress. Our results suggest the accumulation of favorable allelic diversity, especially in the context of changing climate in the genetic resources of SEE.


Assuntos
Variação Genética , Melhoramento Vegetal , Zea mays , Alelos , Europa (Continente) , Zea mays/genética
7.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077099

RESUMO

Industrial hemp is a fast-growing, short-day plant, characterized by high biomass yields and low demands for cultivation. To manipulate growth, hemp is usually cultivated under prolonged photoperiods or continuous light that could cause photooxidative damage and adjustments of photosynthetic reactions. To determine the extent of changes in photosynthetic response caused by prolonged light exposure, we employed chlorophyll a fluorescence measurements accompanied with level of lipid peroxidation (TBARS) and FT-IR spectroscopy on two Cannabis cultivars. Plants were grown under white (W) and purple (P) light at different photoperiods (16/8, 20/4, and 24/0). Our results showed diverse photosynthetic reactions induced by the different light type and by the duration of light exposure in two cultivars. The most beneficial condition was the 16/8 photoperiod, regardless of the light type since it brought the most efficient physiological response and the lowest TBARS contents suggesting the lowest level of thylakoid membrane damage. These findings indicate that different efficient adaptation strategies were employed based on the type of light and the duration of photoperiod. White light, at both photoperiods, caused higher dissipation of excess light causing reduced pressure on PSI. Efficient dissipation of excess energy and formation of cyclic electron transport around PSI suggests that P20/4 initiated an efficient repair system. The P24/0 maintained functional electron transport between two photosystems suggesting a positive effect on the photosynthetic reaction despite the damage to thylakoid membranes.


Assuntos
Cannabis , Fotoperíodo , Cannabis/metabolismo , Clorofila/análise , Clorofila A/análise , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Substâncias Reativas com Ácido Tiobarbitúrico/análise
8.
Front Plant Sci ; 13: 804630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873985

RESUMO

Linking biochemistry and genetics of tolerance to osmotic stress is of interest for understanding plant adaptations to unfavorable conditions. The aims of this study were to investigate the variability in responses of panel of elite maize inbred lines to water withholding for stress-related traits through association study and to identify pathways linked to detected associations for better understanding of maize stress responses. Densely genotyped public and expired Plant Variety Protection Certificate (ex-PVP) inbred lines were planted in controlled conditions (16-h/8-h day/night, 25°C, 50% RH) in control (CO) and exposed to 10-day water withholding (WW). Traits analyzed were guaiacol peroxidase activity (GPOD), total protein content (PROT), lipid peroxidation (TBARS), hydrogen peroxide accumulation (H2O2), proline accumulation (proline), and current water content (CWC). Proline accumulation was found to be influenced by H2O2 and TBARS signaling pathways acting as an accumulation-switching mechanism. Most of the associations detected were for proline (29.4%) and TBARS (44.1%). Gene ontology (GO) enrichment analysis showed significant enrichment in regulation of integral membrane parts and peroxisomes along with regulation of transcription and polysaccharide catabolism. Dynamic studies involving inbreds with extreme phenotypes are needed to elucidate the role of this signaling mechanism in regulation of response to water deficit.

9.
Plants (Basel) ; 9(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093233

RESUMO

BACKGROUND: The seedling stage has received little attention in maize breeding to identify genotypes tolerant to water deficit. The aim of this study is to evaluate incorporation of seed weight (expressed as hundred kernel weight, HKW) as a covariate into genomic association and prediction studies for three biomass traits in a panel of elite inbred lines challenged by water withholding at seedling stage. METHODS: 109 genotyped-by-sequencing (GBS) elite maize inbreds were phenotyped for HKW and planted in controlled conditions (16/8 day/night, 25 °C, 50% RH, 200 µMol/m2/s) in trays filled with soil. Plants in control (C) were watered every two days, while watering was stopped for 10 days in water withholding (WW). Fresh weight (FW), dry weight (DW), and dry matter content (DMC) were measured. RESULTS: Adding HKW as a covariate increased the power of detection of associations in FW and DW by 44% and increased genomic prediction accuracy in C and decreased in WW. CONCLUSIONS: Seed weight was effectively incorporated into association studies for biomass traits in maize seedlings, whereas the incorporation into genomic predictions, particularly in water-stressed plants, was not worthwhile.

10.
Front Plant Sci ; 10: 566, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114604

RESUMO

Chlorophyll fluorescence (ChlF) parameters are reliable early stress indicators in crops, but their relations with yield are still not clear. The aims of this study are to examine genetic correlations between photosynthetic performance of JIP-test during flowering and grain yield (GY) in maize grown under two heat scenarios in the field environments applying quantitative genetic analysis, and to compare efficiencies of indirect selection for GY through ChlF parameters and genomic selection for GY. The testcrosses of 221 intermated recombinant inbred lines (IRILs) of the IBM Syn4 population were evaluated in six environments at two geographically distinctive locations in 3 years. According to day/night temperatures and vapor pressure deficit (VPD), the two locations in Croatia and Turkey may be categorized to the mild heat and moderate heat scenarios, respectively. Mild heat scenario is characterized by daytime temperatures often exceeding 33°C and night temperatures lower than 20°C while in moderate heat scenario the daytime temperatures often exceeded 33°C and night temperatures were above 20°C. The most discernible differences among the scenarios were obtained for efficiency of electron transport beyond quinone A (QA) [ET/(TR-ET)], performance index on absorption basis (PIABS) and GY. Under the moderate heat scenario, there were tight positive genetic correlations between ET/(TR-ET) and GY (0.73), as well as between PIABS and GY (0.59). Associations between the traits were noticeably weaker under the mild heat scenario. Analysis of quantitative trait loci (QTL) revealed several common QTLs for photosynthetic and yield performance under the moderate heat scenario corroborating pleiotropy. Although the indirect selection with ChlF parameters is less efficient than direct selection, ET/(TR-ET) and PIABS could be efficient secondary breeding traits for selection under moderate heat stress since they seem to be genetically correlated with GY in the stressed environments and not associated with yield performance under non-stressed conditions predicting GY during flowering. Indirect selection through PIABS was also shown to be more efficient than genomic selection in moderate heat scenario.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA